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Abstract

Due to the regulated nature and purity standards of the bioprocess and biotechnology
industries, the sector has seen comparatively less sustainable practices than other chemical
industries have. The achievement of sustainability in microbial fermenter design requires
that quantitative tools with links between process parameters and end-environmental
outcomes are employed. This review begins with environmentally friendly metrics such
as process mass intensity, water and energy intensity, and related indicators that act as
a template for resource usage and waste generation assessment. The objective of this
paper is to highlight the primary focus on computational fluid dynamics (CFD) applied
to bioprocesses in aerated stirred bioreactors using Escherichia coli (E. coli). Second, the
objective of this paper is to explore state-of-the-art CFD models and methods documented
in the existing literature, providing a fundamental foundation for researchers to incorporate
CFD modelling into biotechnological process development, while making these concepts
accessible to non-specialists and addressing the research gap of linking CFD outputs with
sustainability metrics and life cycle assessment techniques. Impeller rotational models
such as sliding mesh are an accurate and commonly used method of modelling the rotation
of stirring. Multiple different turbulence models are applied for the purpose of stirred
bioreactors, with the family of k-¢ models being the most used. Multiphase models such as
Euler-Euler models in combination with population balance models and gas dispersion
models to model bubble size distribution and bubble characteristics are typically used.

Keywords: sustainable biopharmaceutical manufacturing; green metrics; mass transfer;
computational fluid dynamics; stirred tank bioreactors; hydrodynamics

1. Introduction

The bioprocess, biotechnological, and biopharmaceutical industries play a large role
in the betterment of the quality of life for almost every person on the planet with the
production and provision of a wide variety of vital products [1,2]. It is of equal importance
to also fulfil their role in sustainable and environmentally friendly practices due to the
social responsibility of this sector. The industry faces rigid regulatory structures, legislation,
and standards to be able to ensure the quality of such vitally important goods [3,4]. The
effort to change existing large-scale processes is both time- and cost-consuming.

The global growth rate of the biotechnological industry between 2015 and 2020 was
1.3%, with an expected steady rise in the following five years, amassing to a global market
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share of USD 295 billion [5]. Biopharmaceutical production constitutes a major compo-
nent of the biotechnology industry, accounting for a substantial proportion of its overall
activity and economic value [5]. In 2024, the global biopharmaceutical market is estimated
at USD 516.79 billion and is projected to expand, reaching USD 761.80 billion by 2029.
Biopharmaceuticals made up 27% of the global pharmaceutical market in 2020 [6].

Biotechnological methods depend on the manipulation and growth of different types
of bacteria, yeast, and filamentous fungi [7]. Moreover, microbial fermentations, a very com-
monly utilized technology within the biotechnology sector, are utilized for a wide variety
of products and molecules such as biopharmaceuticals, food ingredients and supplements,
monomers, solvents, and biofuels [7]. Among various types of bioreactors used for the
purposes detailed above, aerated STBRs are among the most widely employed in microbial
fermentation or cell culture unit operations in the biopharmaceutical sector [8]. STBRs play
a crucial role in bioprocessing, providing an environment for the growth and production of
a diverse range of biologically derived products, including proteins [9,10], enzymes [11],
antibodies [12], and vaccines [13]. Microbial fermentations can be energy-demanding for
agitation and aeration [14,15], use large volumes of water and solvents [16], and generate
extensive amounts of waste [17-19]—all posing sustainability challenges. One vital aspect
is the aspect of energy consumption. The energy consumption and distribution between the
different components, e.g., stirrer, aeration, and heating, are also included because aerobic
fermentation processes consume significant amounts of energy.

Energy demand is one important sustainability concern in microbial fermentations,
particularly in STBRs, which require agitation and aeration to provide sufficient mixing
and oxygen transfer. Both increase, however with great power requirements; in industrial
production, both play an important role in total production costs and environmental impact.
As shown by [14], greater stirrer velocity and aeration augment oxygen mass transfer are
typically also linked with far greater energy consumption. Similarly, comparative studies
show that mixing and aeration in STBRs require extensive amounts of energy relative to
other reactors such as oscillatory stirred reactors [15]. These observations thus call for more
research on more energy-efficient approaches to bioreactor design and operation.

Solvent usage is extensive during the development phase of a product, where only
a few batches are manufactured per step. Early minimization of waste streams, such as
used solvents usage for cleaning, is essential to ensuring sustainability as more research
is dedicated toward improving the environmental footprint of the biopharmaceutical
industry. Proactive efforts to reduce environmental impact at smaller scales during drug
and process development can lead to significantly lower waste generation and more
sustainable practices at commercial scale. CFD can, therefore, assist in these earlier smaller
stages of development in reducing solvent and water usage by identifying dead zones and
areas prone to fouling, thereby decreasing the need for extensive cleaning procedures.

Due to vast nature of the different microbial fermentation processes, modes of opera-
tion, and configurations utilized within the biotechnology industry, this work constricts
the focus on the aerated E. coli fermentations occurring in STBRs. The purpose of this
work is to fundamentally explore the application of CFD and the different fluid dynamic
and numerical models in the design, analysis, and optimization of E. coli fermentations in
aerated stirred bioreactors.

Mechanistic and empirical models, each serving different objectives, seek to represent
aspects such as volume or mass balance, viscosity, temperature, fluid and mixing flow,
pH [20], oxygen mass transfer coefficient, dissolved oxygen concentration, oxygen uptake
rate, and biomass concentration [21]. Classical optimization has relied predominantly on
empirical correlations and minimal 1D or compartment models [22]. These are convenient
but unsatisfactory: they imply spatial oxygen, substrate, and shear gradients—factors with
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a central influence on microbial performance. Hybrid and structured compartment models
are better than these but depend on assumptions that they will break down under complex
geometries or multiphase systems.

CFD offers a first-principles framework with the potential to solve in-depth flow,
mixing, oxygen transfer, and shear patterns—particularly in multiphase fermentation
systems. CFD possesses the potential to integrate hydrodynamics and biological kinetics
to make sustainable process design possible [6]. It has seen increasing applications in
both upstream and downstream processing in bioprocesses [23-27], offering valuable
insights that deepen the understanding of the fermentation process within bioreactors.
CFD simulations enable the modelling of local hydrodynamic flow, encompassing fluid
flow, gas-liquid mixing, mechanical agitation, and mass transfer [28]. Broadly speaking,
there are different aims of applying CFD to model processes within bioreactors. First, CFD
is used by simulation experts to achieve a greater understanding of the conditions at a local
scale within the bioreactor. Such simulations aid in providing insights into the effects of
operational process parameters on the hydrodynamics of the bioreactor, microorganisms,
and product yield. All this knowledge collection through CFD simulations potentially
optimize the fermentation process. Table 1 indicates the versatility of the application of
CFD to STBR processes.

Utilizing CFD, insights into mixing zones, stagnant regions, or areas characterized by
intense shear forces can be revealed [29]. This in-depth process knowledge is crucial for
aspects such as cell proliferation, nutrient and oxygen availability, and product generation—
all vital elements of a stirred bioreactor unit operation within the biopharmaceutical man-
ufacturing process [30]. The integration of CFD simulations into the development and
optimization workflows of upstream processes has the potential to promote sustainability
improvements in the fermentation step of the overall biotechnological process by identi-
fying issues such as uneven distribution of oxygen bubbles, vortex formation, and high
shear stresses [30]. A CFD model allows for the early implementation of potential solutions
during the process development stage, contributing to enhanced process optimization,
robustness, minimized risks of batch-to-batch variability, and overall improved productiv-
ity. Therefore, it offers a means to understand the fermentation process in the bioreactor
that may be challenging or costly to achieve through experimental means. CFD mod-
elling enables the prediction of flow phenomena, encompassing bubble distribution and
vortex formation.

The use of CFD simulations with suitable validations is conducive in designing a pro-
cess space for fermentation that ensures consistent and robust product performance [31,32].
CFD results along with subsequent model creation can be integrated in a Design of Experi-
ments (DoE) strategy to define a process space and assess the model robustness. However,
the drawback of a multifaceted and complex CFD simulation is its computational expense
and time-consuming nature [31,32].

Finally, CFD, as a computational tool, fosters interdisciplinary collaboration as it
provides a detailed understanding of fluid flow, heat, and mass transfer within complex
systems [33]. By simulating these processes, scientists, engineers, and a broad variety of
people from various fields can gain insights into optimizing microbial fermentation [34],
leading to enhanced efficiency and sustainability. This foundational understanding of CFD
facilitates the integration of diverse expertise, fostering innovations and improvements in
bioprocess and biotechnology engineering.

The biopharmaceutical sector demonstrates a lack of agility, flexibility, and robustness
because of the prevalent use of batch mode of operation and processing in the biophar-
maceutical industry [3]. Continuous manufacturing stands out as a promising innovation
with substantial potential to enhance safety [35], selectivity [36], efficiency [37], economic
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feasibility [38], and reliability [39] in biopharmaceutical production. By transforming batch
processes into more continuous and circular systems, manufacturers can achieve significant
reductions in waste generation [40], productivity [41], and resource utilization [42,43].
This is where modelling techniques such as CFD can contribute to the implementation of
continuous mode of operation by aiding in the decision of proper sensor placement within
the STBR, as the hydrodynamics and thus fouling and accumulation behavior are different
in a continuous mode of operation (compared to batch mode).

Recent studies [16,44,45] have underlined that promoting the sustainability of biopro-
cesses demands not only technological development but also quality metrics to evaluate
environmental performance. Tools such as process mass intensity (PMI) and support-
ing indicators confirm that water, energy, and material inputs are the primary drivers of
the footprint of biologics manufacturing. CFD offers a different perspective through the
possibility of predicting the effect of design and operation conditions on energy usage,
oxygen transfer, and mixing in reactors [14,46]. By combining sustainability indicators with
CFD-based data, optimization of the reactor can be aimed at being both environmental and
operational optimum.

As such, this review seeks to explore the ways CFD can support sustainable design
for microbial fermenters by joining together insights into hydrodynamics and the green
metrics and life-cycle thinking. In particular, the paper examines CFD models and tech-
niques reported within the literature, providing a base for researchers seeking to adopt CFD
modelling within biotechnological process development. Additionally, this review seeks
to present the subject matter for an interdisciplinary field of non-CFD experts, biotechno-
logical engineers, experimentalists, and biochemists. Lastly, this review seeks to highlight
the research gap of linking CFD results and sustainability metrics within fermenter de-
sign for microbial fermenters. The rest of this review is structured as follows. Section 2
covers biopharmaceutical production sustainability issues and introduces green metrics to
measure environmental performance. Section 3 introduces the most significant parameters
to describe STBRs, such as power input, mixing time, shear stress, and oxygen transfer.
Section 4 presents fluid mechanics principles and discusses state-of-the-art CFD methods,
including meshing, impeller modeling, turbulence models, and multiphase methods. Addi-
tionally, it describes illustrative case studies in which CFD has been applied in microbial
fermentations, with lessons and present limitations drawn. Sections 5 and 6 conclude by
summarizing the main conclusions and providing directions for future work on the role of
CFD in enabling a more sustainable design of microbial fermenters.

Table 1. CFD modelling applied to biotechnology and biopharmaceutical processes: stirred-tank
bioreactors—upstream processing.

Application

Description Reference

Resolution of contrary
process requirements

Bioreactor processes involve multiple functions:

e  Heat transfer and blending

e  Gas-liquid dispersion

e  Mass transfer

These functions require conflicting hydrodynamic conditions,

necessitating a design compromise. Computational models help in [25,47]
process design through the following:

o  Allowing specific effects to be toggled on and off
e  Enabling parametric investigations

Using computational models saves time and cost compared to physical
experimentation.
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Table 1. Cont.

Application

Description

Reference

Transition from
a batch mode of
operation to
continuous

Scale-down and
scale-up analysis

Investigation of new
reactor concepts

Tool for additional process
understanding

Optimization of
operating conditions

Prediction potential

Sensor, inlet, outlet, and baffle placement in a continuous stirred
bioreactor (CSBR) can be modelled before transitioning from a batch
process. This modelling strategy offers the following:

e A deeper understanding of the process
e  Cost and time savings

CFD modelling provides insights into the following;:

e Hydrodynamics
e Dead zones
e High and low shear stress zones

CFD modelling reduces reliance on laboratory experimentation.

Flow analysis is crucial when scaling processes up/down.

Mean flow and turbulence scale differently with reactor size and speed.
Traditional scaling uses empirical rules and experience.

CFD simulations help with the following:

e  Assess hydrodynamics in scaled systems
e  Identify needed adjustments for consistency

CFD, combined with kinetic models and data, aids process optimization
and scale-up.

CFD simulations predict flow, heat transfer, and reactions in reactors.
CFD simulations beforehand can be more economical and faster than
physical testing.

Key contributions include the following:

e  Optimizes flow and thermal management

e  Predicts reaction rates and pressure drops

e  Assists in scale-up and multiphase flow analysis

CFD can help in the design of efficient, safe, and cost-effective reactors.
CFD with digital twins reduces time, costs, and resources.

Virtual labs help as bioreactors are expensive and require training.
Combining CFD and digital twins improves process understanding and
efficiency.

CFD optimizes impeller design and operating parameters (speed,
temperature, aeration, tank size, liquid height, pH).

Enhances mixing efficiency and mass transfer rates.

Leads to optimal conditions for cell cultures and improved productivity.
CFD, combined with kinetic models (e.g., Higbie’s penetration model),
predicts key process parameters.

Helps estimate mass transfer and mixing times.

[47,48]

[30,49]

(50]

(20]

[21,26]

[31,51,52]

This review, consequently, explores the sustainability challenges associated with mi-

crobial fermentations specifically by utilizing CFD as a perspective. We present green

metrics not as a separate topic, but rather as a framework that can subsequently be associ-

ated with outputs derived from CFD analyses (for instance, mixing time, oxygen transfer

rates, and power requirements). Therefore, the focus of this review is the amalgamation of

sustainability metrics with CFD techniques to inform the design of microbial fermenters.

2. Green Metrics for Sustainability—Link to CFD-Parametrized Design

of Aerated STBRs

This section introduces green metrics solely in the context of variables that CFD can

predict for aerated STBRs. Rather than providing a general sustainability primer, CFD

outputs—such as power draw, energy dissipation rate, gas hold-up, volumetric mass-
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transfer coefficient, bubble size, mixing time, and shear stress—are explicitly linked to

specific sustainability metrics including PMI, WARIEN, and E-factor. This linkage enables

the quantitative evaluation of design and operating choices on environmental performance,

as summarized in Table 2. These CFD sustainability linkages are explored further in

Section 4 through case studies and current CFD methodologies.

Table 2. Linking CFD outputs to sustainability metrics in aerated STBRs.

CFD Output Green Metric(s) Impact on Process Sustainability
Translates directly into electricity consumption; higher power demand
WARIEN . - .
Power draw . . increases water-related CO, emissions and operational
Energy intensity .
energy footprint.
Volumetric . . . .
mass PMI Determines oxygen transfer eff1c1ency; influences aeration energy
transfer coefficient WARIEN demand and compressor load, affecting both resource use and
carbon footprint.
Gas hold-up
Bubble PMI Controls interfacial area and gas-liquid mass transfer; links sparger
size distribution Energy intensity and impeller design to oxygen transfer efficiency and energy demand.
Mixing time PMI Affects solvent and buffer consumption for cleaning and process

Residence
time distribution

Shear stress

Resource intensity

E-factor

Yield-related metrics

consistency; improved mixing reduces dead zones and associated
waste streams.

High local shear can damage cells, lower yield and increase by-product
formation; directly linked to waste generation and overall

process efficiency.

2.1. Energy Utilization in Fermenters and Its Quantification

The synthesis of biopharmaceutical products utilizes a number of inputs, produces a

variety of outputs and toxic by-products and is associated with a considerable energy and

resource consumption [53].

The primary energy demands for aerobic bioreactors that utilize microorganisms

like bacteria involve oxygen transfer and cooling, both of which cause significant energy

costs [54,55]. The environmental impact includes emissions from energy production,

particularly the carbon footprint, and issues related to waste disposal. As a result, multiple

design objectives, such as reducing energy consumption, and lessening environmental

impact, often conflict with each other, making it challenging to determine the optimal

design parameters. These parameters also include oxygen and substrate concentrations

in the fermentation broth, air flowrate, impeller power input, and operating temperatures

for cooling. CFD simulations enable otherwise energy-intensive elements of these plants

to be directly quantified, as variables like impeller power consumption, aeration rates,

and heat transfer coefficients can be calculated directly from the hydrodynamic models

themselves. This enables, through simulation alone, the comparison of alternative design

options—like aeration strategy or impeller shape—not just based on fluid dynamics, but

on sustainability metrics like overall energy intensity or water-connected CO, emissions.

In turn, such goals as reducing energy consumption whilst ensuring adequate oxygen and

substrate concentrations can thus be assessed within the framework of CFD simulations.

The relative primary energy demand for an industrial scale STBR can be seen in

Figure 1. In lieu of energy data taken from a biopharmaceutical production, a similar

process was utilized as a case example for energy data.
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Figure 1. Cellulase production electricity requirements in a fed-batch industrial-scale stirred aerobic
fermentation (300 m? bioreactor). Adapted from [55].

Power draw is a critical parameter in chemical and bioprocess engineering, referring
to the energy needed over time to move fluids within containers (such as bioreactors and
mixing tanks) through mechanical or pneumatic agitation [56]. This energy requirement
significantly impacts the operational costs of STBRs and fermentation plants. Therefore,
efficient mixing with minimal energy expenditure is crucial. The mechanical agitator en-
hances the oxygen transfer rate by generating smaller bubbles and promoting extensive
mixing and turbulence. This process reduces the mass transfer boundary layer resistance
and effectively distributes bubbles throughout the vessel. A continuous oxygen supply
is essential to prevent it from becoming a rate-limiting factor due to the low solubility of
oxygen in water. Numerous studies [54,55,57] have demonstrated the impact of agitation
and aeration rates on the oxygen transfer rate, subsequently influencing cell growth and
metabolite productivity. Oxygen transfer is heavily influenced by hydrodynamic condi-
tions, which are determined by operational parameters, the physicochemical properties of
the fermentation broth, the bioreactor’s geometrical characteristics, and the oxygen concen-
tration in the broth. Additionally, aeration rate is a crucial parameter in aerobic systems
because it influences air compressor costs and power, both of which can be significant.

Figure 2 indicates the importance of selecting aeration rate carefully to stay within
flooding constraints and avoid high total power requirements due to excessive agitator
power at low aeration rates. Significant energy savings in the aeration system can be
achieved by carefully selecting the aeration rate and the impeller power input throughout
the bioprocess, with CFD and mathematical modelling aiding in this selection. The mini-
mum total power that meets all constraints was found at the onset of flooding. Figure 2
underscores the need for careful selection [54].
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Figure 2. Influence of the aeration rate on compressor, impeller, and total electricity power require-
ments. Adapted from [58].

Besides the electrical power needed for oxygen transfer, the cooling system’s power
requirement can also be substantial. Figure 3 displays the average rates of metabolic heat
production and agitator heat dissipation, highlighting that metabolic heat is predominant,
especially at lower oxygen concentration values. It also compares the power requirements
for cooling, the agitator, and the air compressor, illustrating their influence on the oxygen
concentration in the broth. According to Fitzpatrick [57], lowering the oxygen concentration
in the broth reduces the total electrical power/energy requirement for oxygen transfer
due to a higher mass transfer driver. CFD can complement such analyses by resolving
heat generation, oxygen transfer, and fluid dynamics simultaneously, making it possible
to quantify the relative contributions of cooling, agitation, and aeration to total energy
demand; this breakdown is essential for linking hydrodynamic design choices to targeted
process optimization.

4 A
i Refrigeration
= o
© 3 Compressor Power
s o
_g A Agitator Power
<] Metabolic Energy 8
= Agitator ‘E
= 3]
S 2
fan) 83}
4 )
S &
2 5)
< >,
~ <
Oxygen Concentration in Liquid Oxygen Concentration in Liquid

Figure 3. (Left): Rate of metabolic heat production and impeller heat dissipation; (Right): comparison
of average cooling, agitation, and air compression power consumption. Adapted from [57].

In lieu of studies carried out with biopharmaceutical production as the focus point,
similar studies [30,59,60] utilizing fermentation in STBRs were focused upon in this work,
due to a scarcity of the literature found while researching this concept. Garcia-Ochoa
et al. [30] provide insights into the oxygen transfer efficiency related to agitation and
aeration but do not detail the electricity consumption aspects comprehensively. Humbird
et al. [55] describe a potential biochemical ethanol production process in detail, focusing on
process design and optimization, as well as quantifying the specific energy and resource
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consumption of the process. A techno-economic analysis (TEA) report [61] investigated the
aerobic conversion of lignocellulosic sugars to hydrocarbons via a fatty acid intermediate.
Unlike previous ethanol analyses, it found that the aerobic fermentation stage was the main
cost driver for integrated cellulosic biofuel production. Fermentation compressors and
agitators accounted for the highest power demand in the biorefinery process, making the
fermentation step the largest overall contributor to production costs. This analysis is linked
to a higher degree of uncertainty in process design and capital cost assumptions as it was
the first publicly available TEA for such a process [55].

Recent CFD studies have begun to address these gaps. Gu et al. (2025) [14] demon-
strated that novel impeller designs can achieve comparable oxygen transfer with up to
70% lower energy consumption. Jamshidian et al. (2025) [62] validated CFD models for
predicting gassed power draw, energy dissipation, and ky a in large-scale STBRs. Xu et al.
(2023) [21] showed how CFD combined with Taguchi methods can optimize impeller ge-
ometries for energy efficiency and mass transfer. By directly linking such CFD-derived
parameters to sustainability metrics like Water Related Impact of Energy (WARIEN) and
PM]I, it becomes possible to quantify the environmental impact of STBR operation with
far greater precision than TEA alone. Therefore, coupling CFD with TEA and life-cycle
assessment (LCA) frameworks offers a pathway to reduce uncertainty and provide process-
specific predictions of energy requirements in aerated microbial fermenters.

There is a scarcity of the literature and technical reports that comprehensively quantify
the electricity requirements of the main components of an aerated stirred bioreactor, which
include agitation, aeration (and the gas compression involved with providing aeration),
and cooling. This gap in research can be attributed to several factors:

e  Quantifying the electricity usage for each component individually requires detailed
experimental setups and precise measurement techniques. Many studies do not focus
on the quantification of specific energy inputs of each STBR design parameter that is
associated with energy consumption.

e  The specific design, operational parameters, and biochemical reaction mechanisms
and the microorganisms in STBRs can vary widely, affecting the energy consumption
of each of the components involved in energy consumption. This variation makes it
challenging to create generic models applicable even across different STBR systems.

e  Research in bioprocessing often prioritizes parameters like oxygen transfer rates, cell
growth, and product yield within the context of the optimization of the hydrodynamic
conditions for improved product yields and cell growth and conditions. This focus
results in fewer studies dedicated to energy usage quantification and modelling.

As CFD is commonly used as a tool to observe and quantify, among many things, how
energy consumption can be optimized, the specification of each energy usage is relevant in
determining the validity of the CFD models. Many publications [23,24,63,64] utilize power
draw from stirring as validation for their models and hence such information is necessary
when working with CFD simulations.

Developing customized stirring systems for specific applications often necessitates
prototype fabrication, leading to project delays, increased costs and a higher consumption
of energy, resources, water, and solvents. Consequently, employing simulation tools based
on CFD emerges as an appealing approach for designing more efficient conceptual projects
for these systems. In silico models like CFD enable engineers to rapidly and effectively
assess the performance of various stirrer concepts and optimize them to achieve the desired
outcomes. Only after the model is optimized should a prototype be constructed to validate
the simulated performance [65]. Not only are the conceptual design and prototype creation
stages of a process faster, but also a better understanding of the phenomena in the prototype
is achieved and the overall sustainability (as measurable by the multitude of green metrics
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outlined below and in literature) of the process—from concept to industrial scale-up is also
highly improved as well and is also highlighted below.

2.2. Green Metrics and CFD

Numerous metrics have been developed to assess the “greenness” of a process. These
metrics evaluate various aspects such as water, solvent, and reagent usage, energy con-
sumption, and greenhouse gas emissions, as shown in Figure 4. It is suggested that other
sustainable metrics should also be considered in the stages of CFD modelling.

Green Metrics in the (Bio-) Pharmaceutical
Industry

Process Mass 'Total mass of inputs per unit mass of
Intensity product
Environmental Mass of waste produced per 1 kg of
Factor product

Core Metrics

Nz Efneieney Mass ra§o of inputs incorporated
2 into the product
S\
Atomic percent of reactants
/Atom Economy| : 2
< incorporated into the product
-—
Reaction Mass Ratio of mass of reactants
Efficiency incorporated into product's mass
Energy Total energy per unit mass of
Intensity product
—_—
Solvent Ratio of solvent mass to product
Intensity mass
Wastewater Patio of process water mass to
Intensity product mass

Figure 4. Green metrics that are useful in benchmarking the different aspects in which an aerated
fermentation in an STBR can be run in a sustainable way. Adapted from [18,19,66,67]. PMI and
environmental factor are the most commonly utilized core metrics identified within this review.

Green metrics should facilitate strategic analysis and continuous improvement. Met-
rics must be regularly assessed and used for decision making. Organizations must identify
and implement context-specific metrics, leveraging existing frameworks and multidisci-
plinary expertise. More research has been performed in developing new metrics that tackle
different aspects of waste and resource minimization such as the Mass Manufacturing
Intensity (MMI) [18] and WARIEN [45].

The WARIEN metric developed by Cataldo et al. [45] enables further application
of the PMI metric and connects resources used by the bioprocesses with the production
train of water. This metric was developed to assess the water related CO, emission of
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biopharmaceutical manufacturing processes and analyzed the impact and correlation
between water related process costs and its carbon footprint.

The PMI metric was expanded by Benison and Payne [18] to include previously
excluded categories such as cleaning, equipment conditioning, output management, abate-
ment, etc. Assessing these areas during process design offers opportunities for resource
optimization and process improvement. CFD-resolved hydrodynamics in aerated STBRs
area able to predict power input and kLa as functions of agitation and gas rates, which
enables direct estimation of mixing and aeration energy for PMI accounting. Recent
studies [23] validate such CFD predictions and even use them to reduce operational power.
Additionally, waste streams such as CO,, solvents, and by-products must be considered
in sustainability assessments. CFD-based mass transfer models can predict dissolved
gas dynamics [62,68] and by-product accumulation [69], providing quantitative inputs to
E-factor calculations.

Conventional manufacturing facilities use large-scale bioreactors (up to 20,000 L),
which must operate in cleanroom environments. These stainless-steel vessels require
extensive cleaning and sterilization between batches, typically involving chemicals, steam,
and high-grade water like purified water or water for injection. In contrast, single-use
systems (SUS), made from mixed plastics and sterilized using gamma irradiation, are
becoming more common—_particularly for smaller-scale operations (2000-6000 L).

While SUS eliminate the environmental burden of cleaning and sanitization, they
generate significantly more plastic waste, which poses disposal challenges due to in-
consistent regional waste regulations and limited recycling options for complex plastic
materials [44,70-72]. CFD has been increasingly applied to evaluate mixing and oxygen
transfer in SUS, providing insights into whether these benefits offset potential hydrody-
namic limitations compared to traditional stainless-steel fermenters [73]. While SUS reduce
PMI by lowering solvent and cleaning agent demand, they increase solid waste generation
due to disposable plastics [70]. A key trade-off is that SUS generates additional solid
plastic waste, which increases the E-factor. CFD can provide valuable input here by testing
whether optimized mixing and gas dispersion in SUS can achieve equivalent performance
at lower energy input, partially offsetting waste concerns.

CFD modeling can act both as a predictive tool for hydrodynamics and a tool to
mitigate the experimental requirements of microbial fermenter design. By providing
initial evaluations of power input, mixing efficiency, and gas transfer rates, CFD can
inform sustainability metrics like WARIEN and PMI before starting resource-intensive
experiments. Scully et al. (2020) [74] demonstrated such a scenario at the industrial level,
demonstrating that a CFD-based multiparameter scale-up design for microbial fermenters
of 2 kL to 10 kL led to a decrease in the time to market and hence further highlighted CFD’s
potential to replace certain features of costly pilot-scale experiments. In a similar fashion,
Jamshidzadeh et al. (2023) [75] applied Euler-Euler CFD models to Pseudomonas putida
fermentations and generated simulated aeration and agitation conditions that condense
operating parameter selection without extensive physical probing. In the single-use system
paradigm, Mishra et al. (2021) [28] overlaid CFD with population balance modeling to
predict oxygen transfer with below 10% deviation from experimental values, hence giving
confidence to design decisions while lowering prototyping requirements. Taken together,
these studies further show CFD’s contribution to facilitating evaluations of sustainability
and in reducing the resource footprint of experimental design procedures in the domain of
microbial fermenters.

Important parameters such as power consumption, mixing time, and oxygen mass
transfer can be quantified using CFD and directly linked with these sustainability metrics,
enabling systematic evaluation of microbial fermenter performance. Thus, metrics such as
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PMI, MMI, WARIEN, and E-factor provide a sustainability framework, while CFD delivers
the hydrodynamic and mass transfer parameters needed for these metrics.

3. Important Parameters for STBR Characterization

Utilizing CFD proves valuable in the characterization of STBRs by enabling the simu-
lation of various operating conditions that subsequently influence key parameters. These
parameters include power input, dimensionless numbers like Reynolds, Newton and Power
numbers, mass transfer, and shear stress. Before delving into CFD models for bioreactor de-
sign and optimization, it is imperative to thoroughly comprehend the fermentation process,
the hydrodynamic conditions within the STBR, and their effects on the cells (Table 3).

Modern biopharmaceutical production typically uses either glass (typically in lab-scale
environments) or stainless-steel (typical in industry) bioreactors, where cells are cultured
in a growth medium to produce the desired product—often a protein, or in the case of
some vaccines and gene therapies, a virus [58]. The product is then isolated from the
cell culture fluid through multiple purification steps, including centrifugation, depth and
tangential flow filtration, homogenization, and chromatography, to ensure high purity
and accuracy [25]. These filtration steps to remove harmful microbes and viruses, and
the use of water for injection for both product formulation and cleaning processes. Cell
culture fermentation is typically carried out using either fed-batch or perfusion methods. In
fed-batch processes, the culture is progressively scaled up through bioreactors of increasing
size until it reaches peak cell density in a large production bioreactor, sometimes over
40,000 L [58]. The culture is then harvested before entering the cell death phase. In contrast,
perfusion culture maintains a pseudo-steady state, where cells are grown to an optimal
density and then transferred to the production bioreactor. Fresh medium is continuously
supplied while culture fluid is simultaneously removed. Cell retention systems help sustain
cell density, and controlled cell bleeds may be used to avoid overgrowth [76].

Irrespective of the fermentation process’s scale, it is crucial for the dimensions of
STBRs to adhere to well-established relationships documented in literature [30,76]. The
effectiveness of these bioreactors heavily depends on complex interactions involving fluid
dynamics [77], geometric parameters [78], and operational conditions [79]. The rates
of various reactions that take place within the process, such as mass transfer, biomass
growth, production rates and product formation, are dependent on these factors. Therefore,
strategies that enhance both mixing and oxygen mass transfer, particularly through impeller
systems, hold significant importance.

Baffles and stirrers are commonly used to enhance the oxygen mass transfer in STBRs.
These elements improve gas-liquid mass transfer by disrupting the liquid flow and reduc-
ing bubble size, thereby increasing the contact area between the gas and liquid phases [80].
The achievement of effective gas distribution and the provision of an extended residence
time for air bubbles within the culture are pivotal for improved mixing. This is closely
linked to the careful selection of appropriate impeller designs [54]. The impeller choice
significantly influences shear rates or power dissipation in the system.

Radial impellers, characterized by high shear rates, concentrate power dissipation
at the blade tips, leading to non-uniform distribution throughout the STBR [81]. This
imbalance increases the likelihood of stagnant and dead zone development in the outer
reactor region while promoting higher mass transfer in the impeller stream. In contrast,
axial impellers have limitations in gas breakup, allowing a large number of bubbles to pass
through the impeller zone without being split into smaller bubbles [81]. Various impeller
configurations are employed in both laboratory-scale and industrial processes and can
increase the volumetric mass transfer if designed appropriately. Stirring speeds also affect
gas—liquid mass transfer [77].
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Power input and dissipation stand as two pivotal parameters for the characterization
of STBRs [23,62]. As power dissipation in the STBR increases, the bubble diameter decreases.
This reduction in bubble diameter leads to an increase in interfacial surface area as bubbles
break apart due to the induced shear force exceeding the surface tension (force) [82].
Furthermore, coalescence is suppressed, as the bubbles lack sufficient contact time for
film drainage between neighboring bubbles [83]. While the agitation-induced breakup of
bubbles is essential for enhancing oxygen mass transfer by increasing the contact area, the
cell disruption caused by high shear rates needs to be mitigated. Striking a balance between
the power input and the shear stress experienced between the cells is crucial to ensure that
mixing and aeration are adequate for achieving optimal growth rates without causing cell
damage [30].

Ensuring effective mixing within STBRs is important for successful cultivations. The
quality of mixing is influenced by various factors, such as the rheology of the broth, the
type and number of impellers, vessel geometry and size, and the power input. However,
it is important to note that while achieving homogeneity within the vessel is relatively
straightforward at the laboratory scale, scale-up often imposes limitations on mixing time.
On an industrial scale, inadequate mixing can significantly impact bioprocess efficiency
because of the development of undesirable nutrient concentration gradients and limitations
in oxygen transfer rates [84]. Therefore, evaluating mixing time is a crucial parameter.
Power input and tank geometry have substantial effects on mixing time, where, for a
conventional STBR with a fixed T/D; (tank diameter/stirrer diameter) ratio, the mixing
time increases only when the energy dissipation rate decreases [30].

Controlling heat transfer in stirred vessels is crucial for successful biochemical pro-
cesses. Fermentation typically requires a tightly regulated temperature range [85]. Usually,
STBRs often include heat exchange systems, such as jackets or internal coils, to manage
heating or cooling. The efficiency of heat transfer depends on the agitator type, vessel
design, and operating conditions. In STBR design, the impeller, vessel shape, and baffles
should meet the process’s mixing needs, but it is not feasible to design an impeller to
achieve a specific heat transfer coefficient [85]. The key factor in agitator selection is fluid
type [86]. Large, slow-moving impellers work well for high-viscosity fluids, offering good
mixing and heat transfer [87]. In contrast, small, fast-spinning impellers—like turbine
types—are better for low-viscosity fluids. Turbine impellers typically have 46 flat blades
on a central disc, with a diameter-to-vessel ratio between 1/3 and 2/3. Baffles are critical in
batch vessels to ensure effective mixing by reducing swirling and enhancing vertical flow.
Since baffling increases turbulence, it also influences heat transfer [85].

Finally, two of the foremost characterizing parameters for the STBR are the kj a value
and the resulting oxygen mass transfer rate. Many fermentations in the STBR are aerobic.
Oxygen exhibits low solubility in water-like media. Consequently, continuous aeration
is essential for successful cell growth and product formation. As a general rule, the OTR
should equal or surpass the OUR in the broth to avoid a shortage of oxygen for the cells
in the STBR. The OUR is contingent on the specific needs of the cell culture (qp,) and the
cell concentration (X), while the OTR is directly proportional to kya and the concentration
difference between the gas-liquid interface and the bulk fluid (dO,* — dO;). This concen-
tration difference signifies the driving force of mass transfer [88]. With increasing agitation
speed and aeration rate, the OTR also rises, making it one of the most crucial parameters
for the scaleup, design, and performance optimization of aerated STBRs [30]. Multiple
methods, both experimental and empirical, exist for measuring and calculating the kja
value in an STBR [30,88-91].
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Table 3. Some important parameters for STBR characterization.

Parameter

Definition

Equation

References

Power number P,
(also known as
the Newton number)

Reynolds number Re

Mixing time tm

O, mass transfer
coefficient

Shear stress T

Volumetric mass
transfer coefficient ky a

Directly related to the stirrer torque

Often utilized to compare

different impellers

If critical level of turbulence is exceeded P
becomes constant for many impellers
Dimensionless number used to characterize
flow regime based on the ratio of inertial to
viscous forces

Ability of a bioreactor to efficiently mix the
contents are defined by the mixing time

A measure of how much time is required to
achieve a desired degree of homogeneity
(usually 95%)

Convection and turbulence are driving
forces for mixing and mass transfer

As O, as a low solubility in

water-like media,

continuous aeration of the system is
required

O, can become the limiting factor in

high cell

density cultivations

Velocity gradients act on the cells as shear
and normal stresses

Depends on the effective viscosity of the
broth and the shear rate, which depends on
the impeller

geometry and stirring speed

Used to describe the mass transfer capacity
in a bioreactor

Different approaches towards

calculating k.a

Values of ki, and a depend on the eddy
dissipation rate (&)

Describes how efficiently the gas is
distributed in the medium by the impeller

— P
PO - P'NS‘Di5

ND,?
Re; = e i :

tmo<P\3/\7

tm = 5743/ (%) 337T;

qOZX < kLa(dOz* - dOz)

2
T= y,/z(%)
Tave = HeffYave

[81,92]

[93,94]

[30,88,95,96]

(88]

[93]

[88,97]

Dimensionless Numbers

Based on the application and the case, different dimensionless numbers can be used to

characterize different aspects of a fluid flow. Additionally, they aid in the comparison of
different cases with differing characteristics (e.g., fluid viscosity). Dimensionless numbers
can also be used to select the correct models for CFD simulations. One example is the
utilization of the Re number to determine the flow regime; hence, the turbulence model
used. Dimensionless numbers are usually ratios of different types of forces acting within
a flow. There are a number of different dimensionless numbers that are commonly used
in fluid dynamics for different purposes [93]. Subsequently, the important dimensionless
numbers are briefly described and examined.

The component of Newton’s second law that involves the rate of momentum change
can be viewed as inertial forces indicating the difficulty of accelerating the fluid due to
its mass. These forces are determined by the product of the fluid’s density, velocity, and
a chosen characteristic length. The selection of the characteristic length depends on the
geometry of the object through which the flow occurs. Viscous forces arise from frictional
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interactions between fluid layers and are influenced by the fluid’s viscosity. To assess the
relative magnitudes of inertial and viscous forces in fluid flow, their ratio is calculated,
known as the Reynolds Number (Re), as shown in Equation (1) [94].

Re = inertial forces/viscous forces = (puLcpar)/ 1L, (1)
However, Re for stirrers in STBRs is defined by [80]:
Re; = (pN7D;%)/ 1, @

The stirrer Reynolds number Re; can be utilised to determine if the flow regime within
the STBR is laminar, in the transition zone, or turbulent. Re; takes the impeller diameter as
the characteristic length and the rotational speed as the velocity component. Thus, the type
and size of the impeller affect the type of flow regime within an STBR, as well as how fast
the stirrer is being rotated. As geometry of the STBR plays a role in the Rej, it is evident that
the value for the transition Re; depends on the geometry of the impeller, tank, and baffles
as well. For commonly used systems, however, it is generally accepted that at Re; < 10,
the flow regime can be characterized as laminar and as turbulent at Re; > 10% with any
Re; values in between being characterized as a transitional flow regime [98].

The Knudsen number Kn characterizes the boundary conditions of a fluid flow. The
no-slip boundary condition is usually assumed between the wall and the fluid layer in
direct contact with the wall and this boundary condition holds true for Kn less than 0.001.
This means that the characteristic length chosen is significantly larger than the mean free
path of the fluid molecules, and that the fluid can, at least numerically, be considered to
follow the continuum hypothesis. For Kn greater than 0.001, the slip boundary condition is
assumed. For Kn greater than 0.1, the continuum hypothesis cannot be met, and the fluid
flow must be observed using other methods [99]. The Kn number aids in the definition
of the lower limit of the length scale, in which the Navier-Stokes equations are valid and
relevant as well as the transitions to other transport forms in micro- to nanometer- scale
flow channels [100]. As CFD finds its basis with the Navier-Stokes equation, therefore the
Kn number was chosen for its relevance to CFD applications.

Kn = (mean free path length)/(characteristic length) = A/ Ly, 3)

Heat transfer is an essential parameter during aerobic fermentation processes, as a
tightly regulated temperature is crucial for the growth and health of the microorganisms,
as well as for a successful biochemical process. Due to the complexity of heat transfer in
these systems, empirical models using dimensionless analysis are often applied to estimate
average heat transfer at the jacketed walls of the STBR [85]. Thus, dimensionless numbers
relating to heat transfer are of particular interest here.

The Prandtl number Pr correlates the fluid viscosity with its thermal conductivity. It
can be defined as shown in Equation (4). Liquids having low Prandtl numbers exhibit high
thermal conductivity, making them favorable options for conducting heat [93].

Pr = (momentum transport)/(heat transport) = (pcp) /Ay, 4)

The mass transfer within the fermentation process in an STBR (oxygen, nutrients, etc.)
is also of utmost importance for a successful biopharmaceutical production. However, it

can also be formulated in a dimensionless number [101]. This results in a combination of
reactor liquid volume

the Schmidt number, a volume number ( ), the Froude number, and the

(reactor diameter)®
Galilei number. Thus, these numbers are given a closer look below.
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The Schmidt number Sc is a dimensionless quantity that establishes a correlation
between the fluid viscosity and its diffusion coefficient [93]:

Sc = (momentum transport)/(mass transport) = 1/ pD, (5)
The Froude number Fr = %, is a dimensionless parameter originally used in open

channel hydraulics. It represents the ratio of the average flow velocity across the channel’s
cross-section (V) to the speed at which shallow water waves travel, known as the wave
celerity (c) [102].

The Fr number represents the ratio between inertial and gravitational forces [103].
Dimensionless geometric parameters encompass all relevant dimensions—the impeller, the
vessel, or their combined configuration, scaled typically by a single reference dimension,
usually the vessel diameter [103]. This methodology was further advanced by Hixson and
Luedeke [104] and culminated in the influential work of Rushton [92]. In their work, the
Froude number was defined as follows:

Fr = (inertial forces)/(gravitational forces) = (N’D)/ g, (6)

The Froude number proved especially relevant for describing swirling flow created by
a centrally located impeller in a cylindrical tank. However, when baffles were added to the
vessel to eliminate swirling, the Froude number became less significant [103].

The Galileo (or sometimes Galilei) number is defined by the ratio of the gravity to
viscous forces [105]:

Ga = (gravitational forces)/(viscous forces) = (LchaISg) /V?, (7)

The Péclet number Pe correlates convective and diffusive transport phenomena. It is
associated with both the Pr and the Re numbers. Similar to Re, the Péclet number is not a
material constant; its value relies on both the velocity of the flow field and the characteristic
length of the system [93]. The Péclet number can be defined for mass transport:

Pe = (convection transport)/(diffusion transport) = (ULcp,,)/D, (8)
Pe can also be defined as follows [100]:
Pe = (convection transport)/(heat transport) = (ULchar)/ An, )

The Weber Number We can be defined as the ratio of inertia to surface tension forces.
It is usually a parameter that aids in the analysis of multiphase flows that deal with two
different fluids at curved interfaces such as bubble or droplets [106]. Since aeration is of
the utmost importance in aerated fermentations in STBRs, and the amount of gas present
in the broth gives a measure of cell activity, the bubble characteristics is an important
parameter. Therefore, the Weber number is deemed to be crucial for the observation of
bubble formation in this special case of aerated STBRs [93]:

We = (inertial forces)/(surface tension) = (ou’Lchar) /7Y, (10)

Other dimensionless numbers, such as the Grashof, Nusselt, Mach, and Eckert num-
bers, are all applied in fluid dynamics to evaluate different forces and characteristics of a
fluid and/or heat flow.

The last dimensionless number is different than the ones listed above and is related to
the numerical solutions. The Courant number corresponds to the Courant-Friedrichs-Lewy
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condition, where the distance any information travels within a computational cell during a
time step is defined. The Courant number can be defined as follows [107]:

C=uAt/Ax, (11)

The Courant number represents the distance travelled by the fluid compared to the
cell size [107,108]. When the Courant number is greater than 1, the information passes
through the cell in one time step. When the Courant number is less than 1, the particle
might not be able to skip the neighboring cells completely. It is advised to always aim for
the largest Co number possible (but usually < 1) to achieve stable and accurate solutions
(Table 4).

Table 4. Summary of the relevant dimensionless numbers in this work.

Dimensionless Number

Definition Equation

Power number Py (also known Often utilized to compare different impellers
as the Newton number)

Reynolds number

Re

Knudsen number

Kn

Prandtl number
Pr

Schmidt number
Sc

Froude number
Fr

Galilei number
Ga

Peclet number
Pe

Weber number
We

Courant number
C

Directly related to the stirrer torque

__p
If critical level of turbulence is exceeded, Py becomes Po = o-N3.D°
constant for many impellers
. . . N7D?
Used to characterize flow regime based on the ratio of Re; = L ;T 1
inertial to viscous forces Re — VLehar
&
Characterizes the boundary conditions of a fluid flow Kn = Lﬁ
Correlates the fluid viscosity with its thermal conductivity Pr = %
Establishes a correlation between the fluid viscosity and its u
- . .. Sc =5
diffusion coefficient P
Fr =Y
Represents the ratio between inertial and gravitational forces F NZD
=%
. . . . 3
Defined by the ratio of the gravity to viscous forces Ga = LLgrg
v
Pe = UL char
Correlates convective and diffusive transport phenomena P Lo
e — char
An

Defined as the ratio of inertia to surface tension forces

Represents the distance travelled by the fluid compared to
the cell size

4. Basics of Fluid Mechanics and CFD
4.1. Fermentation and Fluid Mechanics

The performance of microbial fermentations is tightly linked to the underlying fluid
mechanics, which are in turn governed by key thermophysical properties of the broth
and dispersed phases. Accurate representation of viscosity, density, surface tension, and
diffusivity are essential in CFD models, as each property directly shapes hydrodynamics,
mass transfer, and energy demand within STBRs.

In E. coli Fab’-producing fermentations, broth viscosity changes significantly over
time, with distinct phases correlating to biological events. As shown by Newton et al.
(2016) [109], viscosity of the broth during the course of the fermentation increases during
exponential cell growth, stabilizes in stationary phase, and subsequently increases during
cell lysis. This correlates with DNA release, product leakage, and cell viability loss. Vis-
cosity monitoring can serve as a rapid and important indicator of fermentation progress.
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Therefore, applying thermophysical properties like viscosity into CFD models is crucial for
the prediction of mixing behavior and mass transfer rates, as changes in viscosity strongly
influence the oxygen mass transfer [110]. According to Buckland et al. (1988) [111], kr.a
decreases in proportion with the square root of the broth viscosity. An increase in broth
viscosity prevents adequate oxygen transfer, leading to lower levels of dissolved oxygen
for microorganisms. This leads to a shift toward fermentative metabolism, production
of undesirable by-products and lower energy generation, which ultimately results in a
substantial decrease in yield [110]. High broth viscosity has a great influence on gas-liquid
hydrodynamics and the rheology of in the STBR. Higher broth viscosity slows down the
bubble rise velocity, which increases the gas hold-up and the residence time of the bub-
bles, and thus can improve the oxygen transfer. However, due to lower effective working
volume and increased foam stability, it may have negative effects as well. Many of the
broth constituents cause these increases in viscosity, such as filamentous microbial growth
(entangled hyphae), polysaccharides and nucleic acids, and high-concentration sugars.
Polymer-producing fermentation is mainly strongly pseudoplastic due to chain entangle-
ment, where the viscosity of the broth diminishes at high shear as the chains disentangle.
In addition, filamentous fungi develop highly viscous pseudoplastic broths with the flow
behavior index down to 0.2-0.4, whereas pelleted growth produces lower-viscosity broths
due to minimized interacting surface area-to-volume [110].

Another thing to consider is the broth rheology. Many fermentation broths have
non-Newtonian behavior and in specific fermentations like bacterial alginate batch
production [112], the broth becomes more pseudoplastic as the alginate concentration
increases, which negatively affects the mixing performance. In this study [112], the influ-
ence of the interaction of the changing broth rheology and impeller mixing was investigated
using CFD modeling. It was found that the model validation showed a good agreement
with the experiments; thus, the evolution of the mixing mechanisms could be studied.
Although overall liquid velocities were found to decrease during fermentation, the relative
volume of the stagnant regions remained nearly unchanged. The flow regime evolved from
unstable to more stable, parallel streamlines over time. Characteristic large-scale vortical
structures, including trailing and processional vortices, were observed. The impeller-
centered vortex geometry was identified as a key driver of flow instability. It was further
proposed that aeration modifies these vortical structures, thereby increasing mixing times.
The mixing time and mass transfer in STBR and how they are affected by the broth rheology
(water, a Newtonian fluid versus xanthan gum solutions, a shear thinning fluid) was also
investigated [31]. Experimental NaCl tracer conductivity experiments were conducted,
and the mixing performance was simulated with CFD. Additionally, the mas transfer
was predicted from the Higbie’s penetration model from multiphase CFD simulations,
which utilized a correlation of bubble size and power input. The mixing time was not
significantly affected by the different rheologies and was observed in both experiments and
the CFD model. The CFD model successfully reproduced mixing behavior in both water
and non-Newtonian xanthan solutions, accurately predicting tracer profiles and mixing
times across a range of power inputs. Bubble size, determined indirectly from process
data, was shown to depend on gas flow rate and power input. The approach reliably
predicted kj a values with accuracy comparable to empirical correlations, and sensitivity
analysis indicated reduced uncertainty in bubble size effects. Overall, both studies [31,112]
demonstrate how CFD models informed by process data and experiments can provide a
robust basis for biologically relevant predictions, such as substrate dispersion and uptake.

In addition to explaining why viscosity and rheology matter, recent studies have
begun to predict these properties dynamically. For example, Penicillium chrysogenum
fermentation broths were shown to follow a power-law behavior with viscosity—and the
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flow-behavior and consistency indices—directly correlated to biomass concentration via
empirical models [113]. Similarly, fermentation broths exhibiting shear-thinning behavior
under varying stir speeds were modeled with power law fits, capturing changes in mixing
efficiency and mixing time [114].

Building on this, a comprehensive study on alginate fermentations used evolving
broth rheology in CFD simulations to predict changes in impeller torque, flow regimes,
and mixing structures. This validated a workflow that accounts for pseudoplastic behavior
during batch operations [112].

More recently, data assimilation techniques have enabled simultaneous reconstruction
of flow fields and rheological parameters—specifically Carreau model coefficients—by
integrating velocimetry data in a Bayesian inverse Navier-Stokes (N-S) framework [115].

In practice, these rheological predictions are often implemented via user-defined
functions (UDFs) or dynamic constitutive routines within CFD platforms (e.g., ANSYS
Fluent 2025 R2 or OpenFOAM.org 13/ OpenFOAM ESI-v2506), where viscosity is updated
in space and time as a function of local biomass or shear rate [116,117]. Information on the
viscosity and rheology of the broth can improve CFD modeling as it can aid in providing
even better predictions on fluid parameters. However, modeling non-Newtonian behavior
in CFD still remains rather complex, due to time-dependent changes occurring during
fermentation and computational expense [112].

For the successful application of CFD in bioengineering purposes, input parameters
such as density of the phases, surface tension, diffusivity, viscosity, and rheology must be
specified, as the models utilized within CFD require such thermophysical properties to
calculate the flow. Moreover, the models may use dimensionless numbers, and this also aids
the CFD models to calculate the hydrodynamics and the fluid flow. From the calculations,
parameters such as shear stress distribution, power consumption, k; a, and other specific
parameters can be predicted and subsequently be utilized for STBR design and linked to
sustainability metrics and tools, like life cycle assessments, as shown in Tables 5 and 6, and
detailed in the following sections as well. Accurate multiphase CFD simulations depend
on the correct specification of surface tension, density, and diffusivity. For instance, broth
composition (e.g., presence of surfactants or metabolites) directly impacts bubble size, gas
hold-up, and flow regime transitions, all of which are driven by surface tension and density
variations [118]. In many CFD studies [119,120], parameters like density and surface
tension are sometimes assumed to be equal to those of pure water, simplifying computation.
However, this introduces uncertainty in predicting dispersion and mass transfer.

The spatial distribution of other fluid mechanic properties such as shear stress and
rate distribution within an STBR is equally important, as this has a defining impact on cell
growth and death [29,121]. Ebrahimi et al. (2019) [79] compared different double-impeller
configurations at agitation rates of 50-150 rpm, showing that the segment-segment impeller
yielded lower average strain rates by nearly 40% and turbulence dissipation over 25% with
more uniform stress fields, making it more suitable for shear-sensitive cultures. Impeller
diameter and type and their effect on shear rates and oxygen transfer were evaluated by
Ramirez et al. (2020) [27]. This study found that smaller diameter propellers reduced
peak shear rates by approximately 35% while maintaining adequate oxygen transfer of
120-140 h~!, thereby lowering energy consumption without compromising performance.
In highly viscous systems, Sharifi et al. (2023) [122] investigated a dual coaxial mixing
bioreactor with Herschel-Bulkley rheology and mapped local shear rate distributions under
multiple pumping and rotation modes. The study concluded that an up-pumping and
co-rotating operation minimized stagnant zones and produced the most homogeneous
shear environment. These case studies show that CFD-derived shear and strain-rate fields
can be utilized for the optimization and design of impeller geometry, rotation strategy,
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and geometric configurations (e.g., baffles and the tank geometry) to create an appropriate
shear stress distribution that the microorganisms can withstand in an STBR.

4.2. The Governing Equations and Conservation Laws

CFD as a modelling technology aims to analyze and calculate fluid movements in both
space and time through computational means. The behavior of a fluid can be predicted
based on specified constraints, forces, and prior behaviors by CFD simulations. This process
relies on three fundamental principles: mass conservation, Newton’s second law of motion
(from which momentum conservation, the N-S equations can be derived), and energy
conservation [123] (p. 3).

The principle of mass conservation asserts that the mass of a fluid remains constant;
it cannot be generated or eliminated. Mass transfer across system boundaries can alter
the mass in a system [124,125]. Any fluid entering a specified region must undergo a
corresponding change. In certain scenarios, this incoming fluid may either (1) prompt an
equivalent mass of fluid to exit the domain, or (2) result in an increase in fluid density and
pressure as it enters the domain. In this case, as the focus of this paper is on STBRs, the
domain is defined as the inside of the reactor. Therefore, all the parts of the reactor, such as
the impeller, sparger, and baffles, and their geometry affect the simulation of the fluid(s)
within the domain [123,126].

According to Newton’s second law, the rate of change of momentum of an object with
constant mass is equal to the sum of forces acting on it. In fluid dynamics, the consideration
extends beyond tracking individual fluid molecules, which would be computationally
impractical. Instead, the focus is on examining how different forces exert their influence on
a small region of the fluid, which is commonly referred to as a control volume [119].

The last governing equation to be considered is the energy conservation equation.
The terms in the equation below can be considered as variations in temperature over time,
the transport of heat by convection, factors contributing to the heat source, and thermal
diffusion [123,126].

4.3. The CFD Simulation Process

The initial step in setting up a CFD simulation for applications in chemical and bio-
chemical engineering involves constructing the geometry using a suitable CAD (computer-
aided design) software like CATIA [127], FreeCAD [128], SolidWorks [129], etc. [23,27].
This geometry is then exported to the chosen CFD software (OpenFOAM [130], ANSYS
Fluent [131], etc.), which includes the discretization of the simulation domain via a mesh.
Additionally, the definition of fluid properties, boundary conditions, and initial conditions
are required. Discretization schemes and solvers must be specified before initiating the
simulation. Subsequently, the various momentum, mass, and energy balances are solved
using the chosen schemes and algorithms. Finally, post-processing is conducted to analyze
and interpret the acquired data, among others vector plots [29], contour plots [8], and calcu-
lations of essential variables such as power [132], mixing performance [89], shear rate [27],
mass transfer coefficient [133], velocity and flow patterns [134], and RTD (residence time
distribution) [135,136], are used for this purpose [137].

4.4. CFD Simulation Methodologies
4.4.1. Mesh Influence on the Simulation

The first step toward CFD simulations is the meshing. During the meshing process, the
geometric object on question undergoes discretization into multiple cells, each containing a
distinct number of nodes. These cells exhibit predictable shapes that effectively capture the
physical form of the object. CFD solvers are capable of employing structured, unstructured,
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or hybrid meshing techniques, utilizing 2D shapes (such as triangles or quadrilaterals) or
3D shapes (including tetrahedra, hexahedra, etc.) with varying densities [138].

Beyond the most common finite volume and finite element discretization methods,
other numerical strategies can be encountered in CFD. CFD in bioprocess engineering can
also be classified according to the underlying numerical method employed. Mesh-free
strategies, such as the smoothed particle hydrodynamics (SPH), do not use structured
meshes and are highly suited to highly deformable interfaces [139]. Spectral strategies,
which model solution variables as expansions in orthogonal basis functions, hold the
potential for very high accuracy for smooth flow but are not highly suited to compli-
cated geometries [140]. Lattice Boltzmann methods (LBM) also emerged as an alter-
native to N-S solvers, with advantages in handling multiphase flows and complicated
boundaries [141,142]. While these are not as widely used industrially in bioreactor CFD
as finite volume methods (FVM) or finite element methods (FEM), they are avenues that
need to be explored when it comes to modelling microbial fermentations, particularly
in the treatment of multiphase hydrodynamics [24,141-143]. For example, Nikoli¢ and
Frawley (2016) [144] applied SPH to stirred tank systems, demonstrating that mesh-free
methods can efficiently predict global mean flow and be coupled with population balance
models, highlighting their potential in bioprocess contexts. Table 5 provides an overview
of the most common numerical approaches and their typical application areas in microbial
fermenter design.

Table 5. Classification of CFD numerical methods for bioprocess applications.

Numerical Method

Bioprocess CFD Applications Advantages/Notes References

FVM (with Reynolds Averaged
Navier-Stokes RANS, Large
Eddy Simulations LES, Direct
Numerical Simulation DNS)

Euler-Lagrange/Compartment
(Parcel-Based)

LBM with LES hybrid

Multiphase Modeling with
Population Balances
(Euler—Euler + Multiple Size
Groups MUSIG)

FEM

Compartmental/Hybrid
Models (CFD-based)

Common in industrial and
research settings; supports
turbulence modeling (RANS,
LES, DNS)

Enables tracking microbial

Hydrodynamics, mixing, impeller
effects, turbulence models, mixing
time in stirred bioreactors

[47,62,69,79,89,145-149]

Modeling environmental

gradients, Lagrangian microbial
phase, zone-wise behavior for
scale-down applications
Substrate gradients,
hydrodynamics in large-scale
stirred reactors, microbial
perspective

Gas-liquid mixing, bubble size
distribution, kr a and oxygen
transfer in industrial-scale
fermenters

Multi-physics modeling,
enzymatic/kinetic network
integration, broader bioprocess
simulations

Integration of kinetics and fluid
dynamics without full CFD;
mixing time prediction in

exposure to gradients; high
computational intensity

Offers dynamic accuracy with
reduced computational costs
vs. FVM; promising method

Captures multiphase
interactions and mass transfer;
computationally intensive

Accurate for complex coupled
systems; less common in fluid
flow-specific bioreactor
studies

Balances accuracy and
efficiency; useful for real-time
or scale-up models

(6]

[24,141-143,150]

[151-157]

[158]

[84,159-163]

fermenters

It is usually highly recommended to create a high-quality mesh, as irregularities in the
cell shape can affect the solution of the partial differential equations (PDEs); thus, the end
solution can differ from what was expected. A mesh is usually deemed to be of high quality
if it improves convergence, stability, or/and accuracy without negatively influencing other
simulation parameters [164].

4.4.2. Impeller Rotation Modelling Approaches

Since the STBR is at the core of this work, the stirring performed by the impeller must
be modelled as well. There are different approaches to model the rotation of the impeller
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depending on the tip speed, turbulence, shear stresses on the cells, and the geometry of the
impeller. Some of the most common approaches to model impeller rotation are discussed
in this section. The most used approaches are the multiple reference frames (MRF), or
the sliding mesh (SM) or arbitrary mesh interface (AMI) approaches [142,165-168]. While
other impeller modelling methods exist, like the inner-outer iteration [169], and the circum-
ferential averaging method [170], this work focuses on the MRF and SM techniques.

MRF model is a steady-state approximation, where the distance between the impeller
and baffles is large enough. The flow can be assumed to be time-independent with respect
to the impeller as the distance between the impeller and the baffles is assumed to be large
enough [146]. Two distinct reference frames are employed to address the rotating domain
and the stationary frame [8]. Within the MRF method, the “inner” and “outer” steady-
state solutions are implicitly matched along a single boundary surface. The selection of
this surface is not arbitrary, as it must be assumed in advance as a surface where flow
variables exhibit minimum changes either with angular location or over time [171]. The
MRF approach is computationally less demanding than the SM method due to the absence
of overlap between the inner and outer regions [168]. On the other hand, the SM approach
assumes a transient state of fluid flow. In employing this approach, the computational
domain is partitioned into two submeshes, including one rotating with the impeller and
the other fixed. The SM method permits the mobile mesh to undergo shearing and sliding
relative to the rest of the mesh along the interface which enhances numerical stability [168].
Unfortunately, achieving a full-time solution for the low in a stirred tank significantly
increases computational costs by an order of magnitude compared to those required for
steady-state simulations [172,173].

Many studies have indicated that the validity of the MRF method is highly sensitive
to the configuration of the rotating zone. Reid et al. (2025) [64] discovered that predicted
mixing time is highly dependent on the chosen width of the rotating region, and De
La Concha et al. (2019) [174] noted that both velocity distributions and power number
predictions are strongly affected by the size of this region. Despite these sensitivities,
the MRF method has been shown to be able to mimic experimental observation to an
acceptable level of accuracy in simulations of multiphase and gas-liquid systems, provided
that the model is implemented carefully [8,168]. In comparison, the sliding mesh method
provides a time-dependent description of baffle-impeller interaction and thus is more
accurate in resolving unsteady flow characteristics [146,175]. The increased fidelity comes
at the expense of computational demand, which typically is one order of magnitude
higher than that of the multiple reference frame approach. Thus, the MRF method is used
in large-scale design studies, while the SM method is used in more detailed studies of
local hydrodynamics. For instance, Foukrach et al. (2020) [171] showed that steady-state
simulations can be used for comparing impeller geometries and screening out designs that
reduce power consumption by up to 50 percent over traditional designs. These comparative
studies illustrate that the choice of the method of simulating impeller motion directly affects
the accuracy and utility of CFD predictions in STBRs.

4.4.3. Turbulence Modelling

Turbulence can be defined as the random variations in fluid properties, encompassing
a broad spectrum of length and time scales [176]. While laminar flows exhibit stability, tur-
bulent flows are chaotic, with turbulent diffusion leading to swift mixing, time-dependence,
and encompass three-dimensional vorticity fluctuations with diverse time and length
scales [176]. The range of the length and time scales depends on the Re number [177,178].
The prevailing theory on turbulence is grounded in the “energy cascade” concept devel-
oped by Kolmogorov [179]. According to this theory, turbulence consists of eddies of
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varying sizes, each possessing a specific amount of energy determined by its dimensions.
The larger eddies undergo disintegration, transferring their energy to smaller eddies in a
cascading process. The newly formed smaller eddies, in turn, go through a similar break-up
process, transmitting their energy to even smaller eddies. This sequence of break-up and
energy transfer continues until the smallest possible eddy size is reached.

The N-S equations are not simple to solve, especially in complex cases. Therefore, it is
necessary to utilize numerical methods to calculate approximate solutions. The calculation
of these solutions, without incorporating any additional approximations is referred to
as DNS [180]. However, this method is typically hard to employ due to the presence of
turbulence. In practical terms, achieving DNS simulations is infrequent, except in scenarios
involving very low flow rates, simple geometries or when substantial computational
resources are accessible [168,178]. DNS is deemed to be not so useful for engineering
interest due to the magnitude of the Re number [181]. This is because at equilibrium, the
viscous dissipation rate at the smallest scale must equal the rate of the energy supply from
the largest scales. However, potential advancements in computer technology could alter
this scenario in favor of DNS in the future [106].

Two other very commonly used turbulence models in the field of turbulence modelling
in STBRs are RANS and LES [182]. The prevalent method for addressing turbulent flow
issues in industrial STBRs involves solving the RANS equations. In this approach, statistical
averaging is performed based on a suitable time scale. The fundamental technique involves
breaking down the flow variables into a time-mean value component and a fluctuating
component [168]. These components are then substituted into the original equations, and
the resulting equations are subjected to time averaging.

Many different turbulence models that are based on the RANS approach are based on
the concept of eddy viscosity. Eddy viscosity is analogous to the fluid kinematic viscosity
and characterizes the turbulent mixing or diffusion of momentum [88,123]. The two most
common two-equation models used in the description of turbulence flow in STBRs are the
k-¢ family [183] and the shear stress transport (SST) k-w models [106], and these are applied
because they provide stable results for global quantities like circulation, mixing time, and
power number at modest computational cost [47,88,146]. A third approach that has been
observed in the literature is the Reynolds stress model [184]. These models encompass
equations for each of the individual Reynolds stress components. Reynolds stress closures
improve fidelity by resolving the stress tensor and are able to better reproduce anisotropic
features such as secondary flows [184].

The biggest disadvantage with RANS approaches is the inability to capture flow
details and its dependence on empirical correlations. Additionally, the k-¢ models are
insensitive to streamline curvature and system rotation [47,146,183] and are known to not
be appropriate for anisotropic flows like the impeller discharge and baffle zones, which can
lead to incorrect predictions turbulent dissipation and mixing predictions [185].

Another technique is LES, where the simulation directly captures large-scale turbulent
structures, and smaller turbulent scales are represented using subgrid scale models. The
central idea in LES involves filtering the N-S equation to decide which scales to retain and
which to discard. This is accomplished by applying a spatial statistical filter represented
by a specific function. LES is still quite computationally expensive [186]; however, with
recent advancements in computer technology [147,187], the utilization of LES for solving
industrial problems is gaining popularity.

LES and hybrid approaches [147,182,186,187] have demonstrated substantially greater
accuracy in resolving transient eddies, blade-pass effects, and mixing-time distributions. An
important feature that distinguishes transient approaches from Reynolds-averaged models
is their ability to resolve the blade-pass effect, the periodic vortical structures generated as
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impeller blades sweep past baffles and tank walls. These unsteady eddies play a critical
role in driving macro-mixing, turbulence intensity, and gas dispersion, but are smoothed
out in steady RANS models. LES and hybrid formulations have been shown to reproduce
blade-pass fluctuations with good agreement to experimental data [147,182,186,187].

Lastly, a hybrid of the LES and RANS models can be utilized. One such example is the
Detached Eddy Simulation (DES). The turbulence model equations act as RANS equations
near the wall but progress to LES away from the walls. The DES approach seeks to combine
the advantages of both RANS and LES; however, this approach cannot capture flow details
near the wall regions due to the size of the scales near the walls [147,178].

The selection of turbulence model greatly affects the validity of CFD predictions in
stirred-tank bioreactors, with comparison studies showing much variability in accuracy
and applicability. LES provides improved resolution of unsteady vortices and blade-pass
behavior, which leads to more realistic mixing-time predictions than Reynolds-averaged
closures [145,165]. Within the k—¢ family of models, Re-normalization Group (RNG) and
realizable formulations perform superior to the standard version for the prediction of
velocity distributions and power numbers, especially in regions of high anisotropy such as
impeller discharge streams [174]. More recent evaluations demonstrate that even among
widely used RANS models, the choice of closure—i.e., between k-¢, realizable k-¢, and
SST k-w—can alter mixing-time predictions significantly, underscoring the sensitivity of
design outcomes to turbulence modeling assumptions [64]. At an industrial scale, CFD
simulations have been compared with experimental measurements, showing the ability of
state-of-the-art turbulence models to predict power consumption and mixing performance
in production-scale bioreactors [23]. Rushton impeller research further demonstrates that
turbulence modeling influences circulation and dispersion: LES and sliding-mesh simu-
lations more realistically represent double-Rushton tank transient flow fields than steady
approximations (simulations run on a single core—CPU) [188], and stress-blended eddy
simulation enhances velocity and turbulence intensity prediction over RANS [187]. Addi-
tional comparative LES subgrid-scale model studies confirm their ability to resolve fine-
scale structures governing mixing and mass transfer [189], and simulations of flow regimes
spanning early to fully turbulent operating conditions illustrate how model choice affects
predicted transition behavior for baffled and unbaffled tanks [190]. These case-specific
studies are in line with more comprehensive reviews, which emphasize that turbulence
closure selection remains one of the most important modeling decisions in pharmaceutical
and biopharmaceutical CFD applications, as it dictates accuracy in mixing, oxygen transfer,
and power-consumption predictions [191].

As highlighted by [168], the predictive accuracy of CFD depends strongly on turbu-
lence modeling choices, which directly influence estimates of power input, mixing time,
and oxygen transfer. Since these parameters are used to guide impeller design, baffle
configuration, and aeration strategies, turbulence model selection plays a central role in
bioreactor engineering decisions rather than being a purely numerical consideration.

4.4.4. Multiphase Modelling

Lastly, models describing two (or more) phase flows and the behavior of each fluid
within the domain are to be discussed. These models fall under the category of multiphase
modelling and typically find their purpose in the description of gas-liquid [23,63,134,192],
solid-liquid [193], or even solid-liquid-gas [8,194,195] flows in CFD. As aerated fermenta-
tion in STBRs are the crux of this work, it is necessary to predict and model the gas and
liquid phases in the domain.

Multiple different approaches with different use cases have been developed over the
years, with the most used ones being Volume of Fluid (VOF) and Eulerian multiphase
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models. Using such models, in addition to population balance models (PBM), bubble break-
up, and coalescence models (for Eulerian models), enables the prediction of parameters
such as the gas hold-up within a STBR, specific surface area, and oxygen mass transfer rates.

The VOF method demonstrates a high level of precision in accurately delineating
the location and shape of the free surface [196]. It offers a straightforward technique for
computing the movement of the free surface throughout each time step in a simulation.
Moreover, the VOF method facilitates the uncomplicated enforcement of dynamic surface
conditions in the cells surrounding the interface [197]. This model operates on the assump-
tion that there is no interpenetration between distinct phases. By assuming that the phases
share identical velocity and pressure fields, a single momentum equation is employed. The
model introduces continuity equations for the volume fraction of each phase to track their
respective interfaces. The model is particularly recommended for scenarios involving slug
bubbles or larger bubbles, as commonly encountered in orbitally shaken systems [88].

In contrast, Eulerian multiphase methods are more widely used for STBR characteriza-
tion and prediction of key parameters, as is evident by the number studies [8,63,152,192,198]
that have applied a variety of Eulerian methods in combination with Lagrangian approaches
and population balance distributions. Within this method, both fluids or phases act as
interpenetrating continua and are represented by their volume fractions [199,200]. The
Euler-Euler method involves the separate consideration of mass and momentum for each
phase, allowing for the examination of interactions between phases [134,198]. This ap-
proach is particularly recommended when dealing with volume fractions of the dispersed
phase exceeding 10% [88]. The Euler-Euler is more computationally efficient in terms
of memory storage requirements and computer power. Consequently, the Euler—Euler
approach is applicable across scenarios with both low and high superficial gas velocities.
However, a drawback of this method is its limited ability to straightforwardly account
for bubble-bubble and bubble-liquid interactions, necessitating the application of specific
models to address these interactions [90].

Additionally, the Euler-Lagrange approach offers an alternative for multiphase
modelling [73,198,201]. In this method, the continuous (liquid) phase is described in com-
bination with a separate dispersed (solid/gas) phase that is tracked through Lagrangian
equations. The trajectory of Lagrangian phase particles inherently requires a time-resolved
treatment based on the flow pattern of the Eulerian phase [88]. The advantage of this ap-
proach is that each individual bubble is modelled, and therefore a better understanding of
bubble-bubble and bubble-liquid interactions can be achieved. Mass transfer, redispersion
and bubble coalescence can be easily modelled due to this advantage. However, not all the
particles or bubbles can be tracked due to computational limitations [202]. Additionally,
this model works better when superficial velocities are low [90].

In cases where the dispersed phase (in this case, the gaseous phase) exhibits a broad
distribution of one or more physical properties, such as size, density, or shape, models based
on the population balances equation (PBE) can be employed. The majority of Euler-Euler
models typically adopt the assumption of an average bubble size [198]. This assumption is
rationalized when modelling systems with a low bubble number density, such as bubbly
flow regime in bubble columns, where weak bubble-bubble interactions and a narrow
distribution of bubble sizes are prevalent [90]. However, in many industrially significant
flows, there exists a considerably high bubble number density, leading to substantial
bubble-bubble interactions. In such cases, a wide distribution of bubble sizes is observed,
deviating significantly from the average bubble size assumption, most commonly seen in
STBRs [152,203]. In the context of bioreactor CFD models, PBEs are commonly introduced
to depict the size distribution of bubbles generated during aeration, where the characteristic
parameter is the bubbles’ number density. The number density within a control volume
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can undergo changes due to processes such as convection, bubble coalescence and breakup,
gas expansion, and mass transfer. Given that both bubble coalescence and break-up result
in simultaneous increases and decreases in bubble sizes (i.e., two small bubbles merging
into one larger bubble or one large bubble breaking into multiple smaller ones), the PBE
incorporates four source terms that account for the “birth” and “death” of bubbles. The
computation of these values necessitates specialized models, often derived from turbulence
theory [88,202]. Additionally, population balance MUSIG models are also utilized often to
model bubble break-up and coalescence within the STBRs. The bubble size distribution
with this model is assumed to be divided into an appropriate number of size classes. For
each of these size classes, the continuity equation as well as the source and sink terms
due to coalescence and break-up are solved, with a single set of momentum conservation
equation for all size classes [204,205]. The MUSIG model assumes a polydispersed gas and
has been successfully implemented to predict key aspects of the STBR such as gas hold-up,
mixing time, and aerated power input [152,204].

A major distinction is made between the homogeneous and inhomogeneous MUSIG
formulations. In the homogeneous MUSIG model, it is assumed that all the bubble classes
travel with the same mean velocity, which is less computationally demanding but restricts
applicability to flows where slip velocities are minor. On the other hand, the inhomoge-
neous MUSIG model considers separate momentum balances for each bubble class, thereby
improving bubble size distribution and gas-liquid slip velocity prediction in polydisperse
flows [155,157,206]. Applications to bioreactor system problems have shown that these ad-
vanced formulations provide more realistic bubble dynamics and interphase mass transfer
representations compared to simpler models [152,204]. Although computationally more
demanding, they are more accurate and increasingly employed in CFD studies of stirred
tank bioreactors.

Building upon these theoretical contributions, recent work has compared the pre-
dictive accuracy of alternative multiphase formulations. Euler-Euler models remain the
most widely applied framework in both laboratory and industrial contexts because they
efficiently predict gas holdup, circulation patterns, and overall hydrodynamics at relatively
modest computational cost [8,192,203]. Their limitation lies in averaging bubble-scale
dynamics, which restricts accuracy in interfacial area and local oxygen transfer predictions.
Euler-Lagrange approaches overcome this by explicitly tracking individual or parcels of
bubbles, allowing detailed analysis of turbulence-bubble interactions [202] and direct rep-
resentation of coalescence and breakup [201]. However, both studies emphasize the high
computational load of Euler-Lagrange formulations, which constrains their applicability to
large-scale bioreactors.

PBMs are frequently coupled with Euler-Euler or Euler-Lagrange frameworks to cap-
ture bubble size distribution dynamics. Seidel and Eibl (2021) [198] showed that PBM cou-
pling substantially improved predictions of the ki a in stirred tanks. Wang et al. (2021) [152]
reported similar gains for bubble size and gas holdup predictions in dual impeller systems,
while Maluta et al. (2022) [203] demonstrated that PBM integration is essential under high
gas-holdup conditions to achieve reliable oxygen transfer predictions.

Geometric configuration further modifies multiphase performance, reinforcing
the need for turbulence-closure-PBM combinations. Zhang and Yang (2023) [134]
showed that semi-circular baffles enhanced circulation and gas dispersion but introduced
flow structures that required advanced turbulence closures for accurate CFD results.
Zhang et al. (2017) [194] quantified how different triple impeller arrangements altered
power numbers and volumetric oxygen transfer coefficients, demonstrating the sensitivity
of mass transfer performance to impeller configuration. Zheng et al. (2019) [195] validated
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CFD predictions in three-phase reactors, confirming that impeller design and turbulence
model choice directly influence phase dispersion and mixing uniformity.

Extensions to three-phase systems have confirmed the growing maturity of multiphase
CFD frameworks. Gu et al. (2023) [193] combined experiments with CFD to validate
solid-liquid mixing predictions in self-similar impeller tanks, while Chernyshev et al.
(2023) [205] showed that discrete resolution of bubble size distribution functions strongly
affects predicted flow structures in bubble columns. Together, these studies illustrate
that accurate representation of solids and gas-liquid interactions require both validated
multiphase closures and careful treatment of interfacial population balances.

Contemporary bioprocess-focused applications stress that theoretical robustness alone
is insufficient; practical utility requires selective closure choice and systematic valida-
tion. Panunzi et al. (2022) [23] demonstrated that multiphase CFD models can repro-
duce industrial-scale mixing times and power draw when tested against experiments.
Werner et al. (2014) [88] demonstrated the effect of shear stress distributions on cell viabil-
ity, the influence of oxygen and nutrient gradients on cell growth and how CFD modelling
can support STBR optimization to balance the hydrodynamic parameters such as mixing
performance and quality with biological parameters. Kreitmayer et al. (2022) [73] validated
CFD-based hydrodynamic predictions in SUS. Montante et al. (2008) [204] systematically
analyzed bubble size distributions in aerated stirred tanks, where the role of breakup and
coalescence models in shaping predicted bubble size, interfacial area, and gas holdup
were investigated, all of which govern oxygen transfer performance. Collectively, these
studies reaffirm that the multiphase modeling approach selection—either Euler—Euler,
Euler-Lagrange, or hybrid PBM—has a direct impact on the calculated gas holdup, disper-
sion for the bubble, and mass transfer for the oxygen variables, all which are key parameters
for scaling up aerobic bioprocesses for optimization.

4.5. CFD Models in Bioreactor Modelling

Characterizing and improving fluid flows in bioreactors is of utmost importance due to
the high sensitivity of biological microorganisms to environmental changes [207]. Critical
engineering parameters such as power input, mixing time, and oxygen mass transfer
coefficient can be established to optimize cell growth and productivity while ensuring
product quality during the active pharmaceutical ingredient (API) production process.
Simulation of hydrodynamic conditions within the STBR can significantly reduce the
necessity for time-consuming and expensive trial-and-error experiments, especially when
working with limited biological materials like primary tissues or stem cells. Considering the
uneven distribution of shear stress and turbulence within most bioreactors, the significance
of obtaining spatially detailed flow data becomes even more evident. Such data can be
acquired through either experimental technique (that are costly and resource-intensive) or
computational simulations [88].

Table 6 depicts the literature that was utilized within this work to examine state-of-the-
art CFD modelling techniques to model different aspects of the fluid flow. It is evident from
examining the literature that almost all articles carried out a mesh independence studies
with two to three differently sized meshes to analyze the effects of the mesh on parameters
such as the velocity magnitude [79], kia [208], and the power number [152]. Table 6 gathers
select CFD case studies of stirred tank bioreactors that reflect the extent of approaches
utilized in biotechnology. Making early seminal contributions to fundamental issues of
turbulence modeling, Aubin et al. [146] comprehensively assessed how turbulence models
and schemes affect stirred-tank prediction, and Lapin et al. [209] proposed a structured-
segregated methodology to elucidate microbial population dynamics in turbulent flow
environments. Following efforts expanded to cover gas-liquid systems and multiphase mix-
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ing situations, with Ahmed et al. [210] simulating gas dispersion in multi-impeller reactors,
Delafosse et al. [211] deploying Euler-Lagrange schemes to appraise heterogeneities, and
Sarkar et al. [212] incorporating PBM to enhance multiphase mixing descriptions. Large
eddy simulations have furthermore been used, for example by Zadghaffari et al. [145], to
explicitly resolve turbulent structures in the vicinity of Rushton turbines. More recent work
focuses on process intensification and optimization. Shu et al. [213] coupled CFD with
Taguchi methodology for process optimization, while Wright et al. [214] assessed uncer-
tainty in microbial growth kinetics propagation to CFD-based scale-up prediction. Other
recent works reflect applied applications, with Mittal and Kikugawa [215] modeling stirred
tank reactors in industrial applications, and Amer et al. [208] expressing CFD-derived oxy-
gen transfer coefficients in operating parameters. A number of studies furthermore explore
digital and data-driven architectures, such as Bach et al. [31] in pilot-scale assessment of
mass transfer, Ebrahimi et al. [79] in double impeller hydrodynamics, and Oblak et al. [29]
in digital twinning of stirred tanks. Complementary advances in multiphase modeling
consist of Hu et al. [8] with OpenFOAM-based simulations of multiphase systems and
Wang et al. [152] with CFD-PBM coupled model for dual-impeller setups. Generalizing,
these papers demonstrate that CFD has evolved from validation of turbulence closure and
hydrodynamics to integral schemes combining PBM, process optimization, and digital
twins. But they also mirror persistent issues like needing robust experimental verification,
coping with biological heterogeneity, and computational expense of new turbulence or
population balance schemes.

Building upon the overview presented in Table 6, the application of CFD and its contri-
bution to different aspects of bioreactor design and optimization, with particular attention
to microbial systems such as E. coli, was investigated. Recent applications [6,216-218] of
CFD in E. coli bioreactors highlight its growing role as a predictive tool for STBR design
and parameter optimization. Nadal-Rey et al. (2023) [216] coupled CFD with lifeline
analysis to show that such modeling can capture oxygen and substrate heterogeneities
experienced by E. coli in large-scale stirred tanks. Their approach provided actionable in-
sights for optimizing impeller and baffle geometry to minimize metabolic stress. Similarly,
Mayer et al. (2023) [217] used CFD to guide the development of a plug-flow scale-down
reactor. Of course, this paper does not model an STBR, but this approach can be applied
to an STBR configuration. They validated the model with E. coli BL21(DE3) cultiva-
tions. This CFD-informed flow field design significantly improved experimental fidelity.
Singh et al. (2024) [6] discusses the potential of integrating CFD-predicted hydrodynamics
with kinetic models, thereby linking mixing conditions directly to cellular metabolism. In
their review, they provided detailed information on how hydrodynamic parameters such
as agitation and aeration as well as biological parameters such as feeding strategies can be
combined to optimize product yields. Ganguly et al. (2021) [218] applied CFD to assess
impeller-sparger configurations in oxygen-water systems, showing that geometric choices
directly influenced bubble distribution and oxygen transfer. Collectively, these studies
establish CFD as a versatile tool that can be integrated with biological and kinetic models.
Such integration makes it possible that informed decisions on impeller selection, sparger
placement, mixing strategy, and scale-down design in microbial STBRs, can be made with
both hydrodynamic and biokinetic parameters combined. Such strategies are promising as
they ensure both process efficiency and experimental relevance.

At an industrial scale, CFD is commonly applied to validate power consumption and
mixing predictions under realistic operating conditions. Panunzi et al. (2022) [23] presented
a case study of aerated stirred-tank bioreactors. The study combines CFD simulations with
plant-scale measurements of mixing time and power draw. A strong agreement between
the CFD model and experimental data was achieved, thus, confirming that CFD can reliably
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reproduce industrial hydrodynamics and serve as a tool for operational optimization. Prado
and Dyrness (2020) [219] outlined a generalized framework in their work. Multiphase CFD
simulations are linked to key performance indicators, such as mixing efficiency and kg a.
Their study emphasized that integrating CFD multiphase models provides a quantitative
basis for evaluating bioreactor performance. Nadal-Rey et al. (2022) [89] validated their
CFD model of an industrial fermenter using Newtonian broths. CFD predictions of mixing
behavior and oxygen transfer were validated against experimental data. The findings
show that CFD can not only capture global mass transfer characteristics but also resolve
localized gradients that impact microbial performance. These case studies depict CFD as an
important modelling tool for STBR design, as it aids engineers in the prediction of power
consumption, optimization of agitation and aeration strategies, and anticipation of oxygen
and mass transfer limitations before costly and rigorous pilot studies or plant trials.

Lastly, many recent works [26,132,193,220,221] have drawn their focus on the im-
provement of impeller design and optimization of geometric configurations to enhance
hydrodynamics and mass transfer in STBRs. Hoseini et al. (2021) [26] coupled CFD with
fluid-structure interaction for the purpose of impeller shape optimization. They demon-
strated that structural deformations under load can influence flow fields and that CFD-FSI
coupling gave crucial information on impeller shape. This proved to improve mixing while
reducing mechanical stress. Similarly, Jia et al. (2022) [132] employed CFD to evaluate novel
disc turbine configurations. The work achieved in showing that modified blade geometries
enhanced circulation patterns and mixing efficiency. Maluta et al. (2023) [220] system-
atically analyzed hydrodynamics, power consumption, and bubble size distributions in
gas-liquid stirred tanks. They showed that there is a strong interaction between impeller de-
sign and aeration efficiency. Additionally, Gu et al. (2023) [193] combined CFD simulations
with experimental validation to study solid-liquid mixing using a self-similarity impeller.
They confirmed that optimized impeller geometries improve suspension quality and reduce
dead zones. Ali et al. (2022) [221] investigated the effect of geometric parameters such as
blade angle and clearance on ki a in non-Newtonian fluids and succeeded in providing a
direct link between design choices and oxygen transfer performance. These studies show
how CFD-driven analysis of impeller and geometry design can aid in the identification of
important parameters and their interactions and connections with each other. This can aid
engineers to make informed performance-based decisions on STBRs design in an efficient
and cost-effective way.

The most used impeller rotational model was the MRF approach. The popularity
of this approach is caused by the simplicity of application and the lower computational
expense as compared to the SM. However, MRF can only be utilized with proper accuracy
when the fluid flow (with reference to the impeller) remains the same between the impeller
and the baffles. Wang et al. [152] has utilized the SM approach, using MRF and single phase
as a starting point (to simulate steady state flow) and then switching to SM (transient state)
with two-phase flow after the single phase MRF simulation had converged.

Recent studies have shown that Lattice Boltzmann large eddy simulations (LB-LES)
offer an efficient and accurate approach for resolving hydrodynamics in stirred bioreactors
used for microbial fermentation. For instance, Haringa (2022) [142] used LB-LES with Euler—
Lagrange particle tracking to simulate substrate gradients and microbial “lifelines” in a
pilot-scale stirred tank, demonstrating reliable predictions of flow velocity, turbulence, and
mixing relevant to fermentation scale-down. Meanwhile, Kersebaum et al. (2024) [24] vali-
dated LB-LES models of Rushton and pitched-blade turbines, matching impeller discharge
hydrodynamic metrics and mixing times across viscosity regimes typical of fermenta-
tion media. Despite its promising attributes—such as mesh-free simulation and efficient
runtime—Lattice Boltzmann CFD (particularly LB-LES) has not yet been broadly adopted
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in industrial stirred bioreactor applications for microbial fermentation [24,150]. While
validation studies (e.g., [142]) showcase its accuracy for hydrodynamics modeling, devel-
opers note a lack of extensive industrial validation and deployment. Reviewing broader
industrial CFD trends, Sharma et al. (2019) [150] highlight limitations in handling high
Reynolds number turbulence and the relative immaturity of turbulence models within
LBM compared to mature N-S-based methods.

In addition to momentum, mass, and energy balances, another fundamental balance
required by bioprocess modelling is the species balance. It describes the transport and
consumption or production of substrates, gases, and metabolites in the STBR. Equation (12)
describes a general format of the species balance [222].
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where v.Vw, is the convective mass transfer, Dys V2w, is the molecular diffusion, and r,
is the net rate of production.

4.6. CFD Models and Artificial Intelligence (AI) Methods

The integration of CFD with Al tools such as machine learning (ML) and artificial
neural networks (ANNSs) has emerged, over the last few years, as a promising strategy to
overcome the limitation of high computational demand characterized by CFD application in
STBRs modelling. Cantarero-Rivera et al. (2024) [223] demonstrated that ANNSs can correct
coarse-mesh-induced errors in CFD simulations of cell culture bioreactors, effectively
reducing the computational cost of mesh refinement without sacrificing accuracy. Similarly,
Chen et al. (2025) [224] applied ML to predict mass transfer in gas-liquid STBRs, achieving
reliable ky a predictions without full-scale CFD runs. Chen and Xia (2024) [225] highlighted
the potential of optimization frameworks incorporating ML to improve fermentation scale-
up parameters, while Helleckes et al. (2023) [226] emphasized the transition of ML in
bioprocess development from conceptual promise to practical deployment.

Hybrid frameworks are also gaining traction. Jiang et al. (2025) [227] developed
a CFD-ANN-NSGA-II model for stirred reactor design by combining CFD simulations
with evolutionary optimization, with the aim of accelerating reactor configuration screen-
ing. Zhao et al. (2024) [228] demonstrated multi-objective optimization of radially
stirred tanks by integrating CFD with ML algorithms, showing the utility of such ap-
proaches for design space exploration. Rahimzadeh et al. (2024) [229] applied ML to
coaxial bioreactors, predicting torque and flow classification directly from CFD-generated
data, illustrating how data-driven surrogates can capture key hydrodynamic responses.
Karimi Alavijeh et al. (2024) [230] provided a perspective on ML in bioreactor scale-up.
They outlined opportunities for surrogate models and hybrid CFD-AI approaches to man-
age the complexity of industrial-scale simulations. Savage et al. (2024) [231] further
illustrated that CFD remains essential for hydrodynamic accuracy. However, they also
show that integrating CFD modeling with ML can significantly reduce computational
expense in large-scale multiphase flows.

Such studies demonstrate that Al-enabled CFD not only reduces computational de-
mand but also broadens CFD applicability in the bioprocessing field by enabling faster
predictions, sensitivity analyses, and parameter optimization. The incorporation of ML
into CFD frameworks therefore represents a critical step toward making high-fidelity
simulations practical for bioreactor scale-up and industrial deployment.

Recent reviews and methods papers consistently report that bioreactor ML suffers
from heterogeneous, non-standardized datasets, limiting model training and out-of-domain
generalization across geometries, impellers, and operating regimes [226,230]. Unlike other
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CFD areas that now publish public benchmarks (e.g., CFDBench; curated turbulence
datasets), the stirred-bioreactor domain lacks comparable, shared datasets and verification
protocols, slowing reproducible progress [232-234]. Consequently, while Al is a powerful
complement to CFD, fully integrated, biologically informed, industry-scale frameworks are

still being actively developed [235].

Table 6. Different case studies of CFD applied to STBRs in biotechnology.

Aim Operational Set-Up 8[1;?3&:22&5 Validation CFD Model Results Reference
Solvers:
Reacting two phase Euler
Superficial velocity: foam for STBR 1, Good agreement of gas hold-up
Two cylindrical bioreactors 0.01m/s Reacting multiphase Euler in STBR 1 between simulations
STBR 1: baffled, Rushton Uniform bubble foam with tri-phase for and experimental data
E . 1 turbine, air injected with a ring diameter 0.5 cm for Xray Computed STBR 2: air, water and Similarly also for STBR 2 with
xll?srlmenta sparger at the bottom of the tank ~ SIBR2 T my - hP (ET) polymethyl methacrylate the exception of the calculated
validation into water For Frl—phase the . omograp. Yf particles gassed power consumption 8]
co.nl’\lparlson STBR 2: baffled, three impellers particle diameter is Experiments for gas No-slip boundary smaller than experimental value
;ﬁ;ulation with the bottom impeller being constant at 150 um and hold-up ! condition at the tank wall Bottom Rushton turbine flooded
a Rushton, and the middle and density of 1190 kg/m? measurements and baffles with particles in tri-phase
top are pitched-blade downflow Impeller speeds of 3.78 Consfant gas inlet simulation, with a radial
turbines and 5.08 RPS for velocity and pumping flow at the upper
two-phase simulations atmospheric pressure at turbines
gas inlet and outlet
respectively
Simulation results somewhat
match the experimental velocity
Reactor: profiles
Height = Diameter = 30 cm Velocity vector plots and
Four baffles of 3 cm width turbulence intensity contour
arranged at 90° intervals along plots
'{he talrl‘k Laser-Donpl Il\iA/{{II\:IS N bul Axial velocity depicted as a
i mpeter: R aser-Doppler -¢ turbulence function of dimensionless radial 5
MRF evaluation 45° pitched turbine blade Anemometry (LDA) model . coordinate [215]
“Pumping down” impeller with Solver: SIMPLE algorithm Biggest discrepancy in the axial
four blades velocity profile near the impeller
Axial location 10 cm from Size of MRF domain near the
reactor bottom and diameter of impeller can influence the
10em solution
Zone interfaces should not be
close to the impeller or baffles
Mixing time 095
for power inputs for water and
Torispherical-bottomed Standard RANS k- xanthan gurz\zrar\fgmg from 0.5
cylindrical and baffled STBR turbulence model to 9(-12 lkwm ° using the CFD
S with one impeller in an Tracer Average Navier-Stokes mode! X
vbﬁl?ﬁngretéﬁiizﬁd kea up-pumping configuration Agitation speeds of 150,  experiments with Euler-Euler approach for CFD model to predict kpa [31]
o 1:; 1 Liquid level 320 and 400 RPM sodium chloride steady state runs validated with independent g
potentia H=07-165T Power number Transient rotor-stator data and as accurate as
Loading volume range of interface approach for :;It]-i%{altcia:)l r‘Correlatlons for ka
— teady stat
150-350 L unsteady state runs Bubble size dependent on gas
flowrate and power input for
the investigated conditions
Validation of a
Euler—ITagrange Good reproducibility of the
mode@lmg approach Hemispheric bottom vessel concentration evolution after
cC(;:qulér;%ez ‘I/-Iv‘;l"(l";go‘igi 11111163 PIV p}llse:l irgection by the CFD
- optical simulation )
compartment model Zf 201]7 1 Water as single phase trajectography Standard RANS k- Good representation of the
(Eulerla?l d D?(lf Olrlnzp; er Rotational speed 100 Tracer turbulence model turbulent flow by the [211]
aPPL(’aC' ) any ¥ al Clearance fr?om RPM experiments with SM CFD/compartment model
]SJtOF\(fSth mode bottom C; = T/3 4 mL'NaCl However, no consideration of
C?;:tin(ﬁ:nals-Time Two baffles solution gas phase and thus only suitable
Markov Chain positioned 180° from each other for cultures with low oxygen
(Lagrangian demand
approach)
Good agreement between
experimental and simulated
MRF tracer and sucrose dissolution
Tracer experimental RANS k-¢ turbulence tests )
Evaluation of - i tests with 1M NaCl model 3D gelomgtr}): of the 1sltlrred X
mixing in baffled and  Different reactor Distilled wager ag 25 solution and Python script utilized to vessel and the impeller strongly .
unbaffled types Mixing speeds of 30,90,  conductivity discretize the normal affect the fluid flow, and it [29]
vessels 120 and 200 RPM measurements distribution of the sucrose should be good practice to use
Dissolution of crystals into 100 size CFD to examine this effect as
sucrose dlasses assumptions (such as the

improvement of axial flow with
baffles) is not always to be
observed
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Aim Operational Set-Up 83;3?2255 Validation CFD Model Results Reference
Cylindrical STBR with spherical
Prediction of bubble %ﬂiteoen;mpeuers; Qpnmlged mixing achieved by
size distribution Rushton impeller, two MRF increasing shear in the §ystem
(BSD) and a more three-blade pro éller tvpe Impeller speed ki a prediction k-¢ turbulence m_odel through an increase of impeller 212]
efficient approach impell Ph P h bly§ b 200 RPM Lap Euler-Euler multiphase speed to create smaller bubbles
towards optimized 1mp;4grs W;t each blade bent Population balance model Good agreement of CFD with
mixing ;toir ba fz;lnei ien STBR experimental results
Pipe sparger
STBR with impeller types of
bent blade disc turbine,
concaved blade disc turbine,
and Rushton turbine of 4 baffles Three key viscosity values and
T=175mm CFD-Taguchi approach their corresponding consistency
ge_lgll’gsoéﬁe tank =240 mm Iteratior% 1000 Stlzps phases as control parameters
Bw7: 12 mm; height of baffles = Two-phase were identified by examining
Modelling: Aerobic 220 mm: clea,rance of baffles and Impeller speeds: Experimental RNG k-¢ turbulence the viscosity growth curve [213]
fermentation tank wall = 2 mm 400-700 RPM fermentation model . throughout the reaction N
D; = 12mm Euler}gn multiphase Control parameters were
Height of impeller above tank conditions: average subjected to quantitative
bottom C = 47.5 mm bubble diameter 4 mm assessment to gauge their
Height of air sparger above tank impact on the fermentations
bottom G =10 mm
Thirteen holes are evenly
distributed along sparger
Cells were found to flourish in
aerobic conditions, but some
sections also
experienced anaerobic
digestion
As the mass flow rate increased,
the area
undergoing anaerobic
digestion expanded
Stirred tank reactor with Glucose was inserted . L Glucose content varied by 2-5%
CFD-based kinetic in Rushton turbines through the top at feed Single liquid phase at all flow rates due to
an industrial Sparger in the rotating domain rates: 0.5kg/s, 1.0kg/s, - Standard RANS k-¢ uncertainties in the [214]
bioreactor Baffles and coils in the 15kg/s, and 2.0 kg/s gg:gle;caetemodel kmeh; factors tl"\at govern
stationary field Impeller speed 69 RPM y aerobic metabolism
As the fed-batch process
advanced, the glucose
gradient level increased due to
the larger capacity and longer
mixing time
At the beginning of the study,
the model showed the most
significant
response to the basic model
Effects of impeller speed and
gas flowrate on flow fields, gas
Cylindrical tank hold-up, BSD, gas-liquid
ylndrical tan interfacial area examined
(T = 420 mm) with standard Presence of gas changes the flow
ellipsoidal at the bottom of the field structure and can improve
tank fluid mixing with 6BT + 6ITU
Four equally spaced baffles 6BT + 6ITU can achieve more
Clearance between baffle and uniform bubble sizes with
Egik }‘iva}ll'z mr(rix' improved bubble dispersion
leigh of liquid in tank 500 mm Ta " d ai d MRF f d to th
Ring sparger p water and air use performance compared to the
Investigation of (di 8 lz g210 ) below th Gas flowrate PIV Standard RANS k-& other impeller configuration
gas-liquid lmlrsgrle er mm) below the 0.76 m3 /h CFD-PBM turbulent model . (6BT + 6ITD)
twoophase flow inmeller with 20 For CFD simulations: Coupled model Euler-Euler multiphase Gas hold-up distribution and
o-phase Low P . Impeller speed validated based on model _liquid interfacial ith
characteristics in downward-facing holes 60-120 RP] power PBM to solve BSD with gas-liquid intertacial area w1 [152]
stirred tank with two  Three impellers used with For PIV consumption Luo break-up and Luo and this COF\flg.uratlon more
combined diameter T/2 (2 impellers used measurements: experiments and Svendsen well-distributed =
dual impellers in combination in each set-up): Impeller speed BSD coalescence—MUSIG Gas hold-up vastly improved
60 RPM model with increasing impeller speeds

Six-bent-bladed turbine (6BT) as
the lower impeller
Six-inclined-blade
down-pumping

turbine (61TD)
Six-inclined-blade up-pumping
turbine (6ITU) as the upper
impeller

compared with increasing gas
flowrates

High impeller speeds more
beneficial to the increase of gas
hold-up in comparison to gas
flowrates

CFD simulations of power
consumption close to
experimental data with a
maximum deviation of 6.3%
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Table 6. Cont.

Operational Set-Up

Operating
Conditions

Validation

CFD Model

Results

Reference

Investigation of
utilization of

LES approach to
simulate and
predict different
aspects of mixing in
a stirred tank

Baffled tank with diameter T =
270 mm

Liquid height in tank H=T =
270 mm

Rushton turbine with diameter
90 mm with a

distance of 90 mm from the
vessel

bottom

Water at 25 °C used
Impeller speed 250
RPM

Experimental data
available in literature

MREF as a starting point
and then switched to
unsteady state (SM)
Standard RANS k-&
turbulent model used as a
starting point until steady
state flow field; these
results used as initial
approximations for LES
turbulent model
Smagorinsky-Lilly model
as a subgrid model

Flow field, power consumption,
mixing time, turbulent kinetic
energy and turbulent
dissipation rate were predicted
Good agreement between CFD
simulations and

experimental data—mean
tangential and axial

velocities, radial average
velocities, power

consumption and mixing time
Mixing time depends on feed
points due to a couple of
reasons:

1. Inner rotating mesh was main
promoter of tracer distribution
2. Lack of tangential exchange
of tracer between flow loops
which were in between the
baffles

Increasing the Re value creates a
stronger radial out-flow which
pushes the tracer into the
recirculation loops and reduces
mixing times

Comparison of LES and RANS
predictions of the tracer
concentration profile with
experimental data demonstrates
improved predictions with LES
that can result in more reliable
design of the mixing process
CFD model deviate from
experimental data closer to the
impeller tip as the simulated
flow field shows this to be
mostly symmetrical but
experimental data are slightly
skewed toward the upper side
of the impeller

[145]

Investigation of the
effect of modelling
approach,
discretization
scheme and
turbulence model on
turbulent flow in
stirred tanks

Dish-bottomed

cylindrical tank T=H =0.19 m
Four equally spaced baffles with
width T/10

Six-blade 45° pitched blade
turbine with diameter D; = T/2
Hub diameter 0.2D

Positioned at T/3 on a shaft that
extended from the vessel base to
the liquid surface

Water at 273 K

Impeller rotational

speed 300 RPM

(Re = 45,000) LDV
Up-and

down-pumping

configuration

SM, frozen-rotor model
and circumferential
averaging model
Standard RANS k-¢
turbulent model and RNG
k-¢ turbulent model

Choice of impeller model only
slightly affect the mean radial
and axial flow patterns in the
impeller discharge region and
only slightly underpredict the
dimensionless turbulent kinetic
energy

Discretization scheme had no
effect on mean radial and axial
velocities in the vessel and
underpredicted the
dimensionless

turbulent kinetic energy, with
first order schemes
underpredicting it the most
First order UW

underpredicted a swirling
region underneath the

impeller

Both turbulence models had no
significant effect on the mean
radial and axial velocities
Dimensionless turbulent kinetic
energy values also
underpredicted by both
turbulence models, especially in
the discharge region of the
impeller

CFD simulations

somewhat underpredicted
dimensionless turbulent kinetic
energy and power numbers and
overpredicted the

circulation numbers in both up-
and down-

pumping configurations

LES predicted better the kinetic
energy levels that match better
with the

experimental data
Discrepancies in the

prediction of turbulent
parameters maybe come from
Reynolds averaging

[146]

Identification of
various flow
regimes in dual
Rushton turbines
stirred bioreactor for
various gas flowrates

and
impeller speeds

Baffled cylindrical acrylic vessel
with

T =160 mm and height 250 mm
Dual impellers mounted on the
shaft

First impeller

90 mm and the second 110 mm
from the vessel bottom
Rushton turbine with diameter
64 mm

Liquid height of

240 mm

Ring sparger

Different flowrates and
impeller speeds used
for various different

Gas flowrates 0.3, 0.5
and 1.0 vvim
Impeller rotation
speeds range 200-600
RPM

Tracer experiments:
hydrochloric acid

Tracer experimental
tests tests with 1M
hydrochloric acid
solution and pH
measurements
Measurements of gas
hold-up distribution

MRF

Standard k-¢ turbulence
model

Euler-Euler multiphase
model

MUSIG model with
break-up and

coalescence modelled
using isotropic turbulence
theory

Gas hold-up increases with an
increase in

impeller rotational speed
Mixing time varied
depending on the operating
flow regimes

Good agreement between
experimental data and CFD
simulations

[210]
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Aim Operational Set-Up 8&?512355 Validation CFD Model Results Reference
Population balance model
accounted for bubble
coalescence and break-up
absolutely necessary for
accurate prediction of

For CFD, different Ds, multiphase flow
50 L two-chamber single-use ;‘)r I lr ereilt\h ! Ring sparger showed better
Model development : PIpe spargers w f he pi
of sas-Tiquid mixin, bioreactor vessel different lengths and performance over the pipe
g W b%l ' g E = Ci? an ;nd ring sparger with MRE sparger when comparing kj a
g?stritl,luﬁoib»:ge He l,gé EI?I om different diameters Kk k-¢ dispersed turbulence and ga hold-up
= € La . .
predict the effect of Three-blade examined. measurements model Optimum diameter shown to be 1208]
ing ri i ; ; o Impeller tip speeds of Euler-Euler model 80% of the impeller diameter

using ring or pipe impeller pitched at 30 PIV :

spargers and D; =228 cm 0.6,1.2and Population balance model kpa prediction with constant

impeller diameter on  Alr sparger was a pipe with 18m/s with different sizes of bins  pubble size simulation proved

kra length 3.1 cm and pore sizes of Alr sparging rate set at to be very different from

10 pm 8(1)2‘;&25 and experimental results

Population balance with
different bin sizes predicted
more realistic ky a values

kp a directly proportional to the
impeller-to-vessel diameter ratio
raised to the power of 2.8

0.02 m® fermenter;

Good agreement of

power values between
simulations and

experimentally measured values

Analysis of the T=0263m Higher interaction

influence of Two different . . between impellers with an

impeller impeller Water at room S‘T}:‘:iﬂons performed increase in rotational speed

cor\ﬁguration and configurations temperature },—Vlligh-Perormance Increase in 4rot§tiona1 speed

rotational speed on utilized Three different Power number C ine Virtual leads to a rise in power values, [79]

hydrodynamic Clearance from tank bottom C; i oller speeds: 1 comparison omputing Virtua average strain rate magnitude

behavi d 20,088 i impeller speeds: 50, 100 Laboratory Canada d h 1

nfix?:;%o;earrflormance Four barfrflles and 150 RPM MRF al}thavemge shearstress vaues

- k-¢ turbulence model with a
of the STBR with Baffle _ch_lﬂ" 0.025 m 3 simultaneous decrease in
double impeller Total liquid volume 0.015 m~; H mixing time
=1u4T Different impeller

configurations exhibit different
Flow numbers, power numbers
and average shear stress values
CFD simulations and

Characterization of Euler-Lagrange kinetic model validation with

heterogenous cell Only indirectly simulations with experimental data from

population in an
STBR with unideal
mixing

E. coli
0.9 m? stirred tank reactor

experimentally

validated

Lagrangian reaction
coupling

Structured cellular model
applied for sugar uptake

literature

Glucose concentration field data
is qualitatively verified from
experimental observations from
the literature

[209]

4.7. Limitations of CFD

Despite the different ways in which CFD can be utilized for the prediction of optimum
operating conditions in an STBR, for greater comprehension of the fluid flow and fluid
characteristics and their effects on the cell nutrition and growth, there are some limitations
of this modelling technique that need to be kept in mind. The preceding results shed
light on how CFD can enhance the efficiency of process development and optimization in
the production of biotechnology products. However, it is crucial to be mindful of certain
limitations when utilizing CFD modelling.

The most significant limitation arises from the fact that CFD solutions primarily rely on
physical models of real processes, and as such, the accuracy of these solutions is inherently
constrained by the precision of the models incorporated into the software [168,236]. Given
that CFD is often employed to simulate highly complex problems, these models are suscepti-
ble to inaccuracies. For instance, turbulence modelling, essential for various flow processes,
can frequently deviate from experimental data [47]. Because simulations inherently cannot
replicate reality perfectly, CFD simulations are usually meant to be accurate enough to serve
as a cost-effective complement to physical experiments [88]. Errors in CFD simulations can
be classified into model errors, discretization errors, iteration-convergence errors, rounding
errors, and programming/user errors, with the latter being the only avoidable type [188].
Model errors, often the largest and hardest to estimate, play a significant role, especially
in two-phase bioreactor simulations where choosing the right model is critical [237]. CFD
faces limitations due to the lack of suitable models for complex physical aspects, particu-
larly within the realm of RANS-based two-fluid (or Eulerian—-Eulerian) models [238]. These
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models are essential for simulating industrial bioreactors. For example, the aerated power
consumption of aerated fermenters is significantly influenced by factors such as gas cavity
patterns, aeration rates, impeller speed [239], and bubble size distribution [240]. These are
challenging to predict, especially when a high-volume fraction of the gas phase alters the
turbulent flow field of the liquid phase compared to a single-phase system with the same
geometry and impeller speed.

Specific challenges arise in the realm of biopharmaceutical CFD. Reaction modelling,
especially capturing complex chemical reactions involved in biopharmaceutical synthe-
sis, poses a significant challenge [6,159]. Modelling the behavior of biomass, particularly
cells producing the desired product within their cell membranes, adds another layer of
complexity [241]. Additionally, the inherent time scale of fermentation processes can be
incompatible with the simulation time, making it challenging to accurately model and pre-
dict real-time fermentation dynamics [6,159,216]. As can be seen by the research conducted
within the scope of this work, studies utilizing CFD as the only method of bioprocess
investigation have made an indicative impact on process improvement through the identifi-
cation of non-ideal hydrodynamics and how that can cause yield losses. Additionally, it has
helped with bioreactor design [242,243]. However, process improvement is still dependent
on comprehensive experimentation, as the complete application of data generated through
CFD simulations cannot be achieved if it is unable to fully capture cellular responses to
spatiotemporal flow information [6,244]. Modeling large-scale processes using CFD is com-
plex due to the wide range of time and spatial scales involved. While the overall mixing
efficiency depends on the global flow patterns within the reactor, localized interactions
between the liquid flow and gas bubbles affect bubble formation and merging, which in
turn impacts oxygen transfer between phases [201]. Additionally, because fermentation
is often carried out in fed-batch mode, the model must account for the process’s dynamic
behavior over time. This is especially the case when biological activity alters the broth’s
rheological properties through substrate depletion, production of metabolic by-products,
or temperature changes [245].

While CFD offers very detailed information about flow, mixing, and mass transfer,
application of CFD to microbial bioreactors also reveals draconian limitations. First, CFD
models attempt to classify microorganisms as a homogeneous phase, hence overlooking
heterogeneity at the single-cell level; this heterogeneity has been shown to significantly
affect microbial population robustness and process performance [246]. Second, combin-
ing CFD with detailed metabolic or genome-scale models has the potential to provide
valuable mechanistic insight, although such combination is computationally intensive and
remains at case-study levels [6,247]. Third, validation of CFD predictions is hindered by
the challenge in quantifying precise local oxygen, substrate, and by-product gradients at
industrial scale; additionally, such simulations become computationally demanding, which
confines their wider application to routine bioprocess design [248]. Finally, despite all these
troubles, recent applications reveal CFD potential in sustainable design. Yu et al. (2025) [46]
successfully employed CFD for bioreactor optimization in Bacillus subtilis and achieved
substantial cost reduction in enzyme manufacturing. As such, these examples outline the
dual reality of CFD in bioprocess engineering: current constraints in biological modeling,
computational requirement, and experimental verification, but more so, a growing body of
proof for its revolutionizing role in sustainable microbial fermenter design.

Another notable challenge with CFD involves truncation errors resulting from ap-
proximations in the governing equations. These errors diminish as the mesh becomes
finer. However, this refinement also leads to increased computational time and memory
usage [237]. Factors affecting mesh quality, such as skewness, smoothness, and aspect ratio,
play a pivotal role in ensuring accuracy and convergence of the solution [25,167]. Con-
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sequently, mesh independence studies are conducted during the model creation process.
These studies ensure that the mesh strikes a balance, avoiding excessive coarseness that
might yield an inaccurate or suboptimal solution while preventing excessive fineness that
would result in unnecessarily prolonged processing times [27,88,168]. Conducting mesh
independence studies is a mandatory practice in CFD, involving systematic variations in
mesh parameters to ensure that the results are insensitive to changes in mesh density [249].
This rigorous approach is vital to guarantee that the obtained solutions are robust and
free from numerical artifacts arising due to inadequacies in the mesh. Additionally, dis-
cretization errors can be reduced through the utilization of techniques like Richardson
extrapolation, grid systematic refinement, or the grid convergence index, with higher qual-
ity meshes improving accuracy [237]. However, refining the grid increases computational
time exponentially and only gradually improves the solution’s accuracy [237].

CFD predictions and simulations are validated by comparing them with experimen-
tal data to precisely quantify any model-related errors and make informed use of the
results [237]. To manage complexity and computational time effectively, assumptions are
frequently introduced while preserving the essential characteristics of the problem. Exper-
imental data serves as a crucial benchmark for assessing the accuracy of computational
models that have been described within this work, ensuring that they faithfully capture
the underlying physical phenomena. This alignment is particularly critical in applications
like fluid flow in STBRs, where precise knowledge of the fluid characteristics and their
connection with biotechnological parameters is of crucial importance [25]. Estimating total
error requires validating CFD results with physical experiments, using methods such as
PIV, LDA, or laser-induced fluorescence for flow field validation. For custom-developed
CFD codes, verification is also essential [237].

Validation studies provide an essential feedback loop, allowing researchers to refine
and improve their models based on empirical evidence, enhancing the fidelity of CFD
predictions. When applied to process design, validation typically proceeds after a thorough
and precise simulation [88]. A comprehensive understanding of the process, including
its hydrodynamics and flow patterns, is essential for the accurate interpretation of data
derived from the simulation. Validation and simulation often operate synergistically, each
informing the other in a quasi-iterative process. However, simulations can be conducted
before experimental validation to formulate hypotheses and propositions regarding the
most optimized mode of operation. Different validation methods have been found in
literature (Figure 5), ranging from tracer experiments with dye, NaCl, or HCl/mixing
time/RTD [23,49,79,250], power consumption and power number [27,79,193], k; a measure-
ments/oxygen mass transfer [208], and gas hold-up [134]. Additionally, contactless mea-
surement methods such as particle image velocimetry (PIV) [77,152,165,204,251,252], planar
laser-induced fluorescence (PLIF) [253,254] and laser-doppler velocimetry (LDV) [255,256]
are all common experimental methods to validate CFD simulations.

In the PLIF, fluorescent dyes are introduced into the fluid, which are then excited
by a laser sheet. The resulting fluorescence is captured by cameras, and the intensity
variations are analyzed to visualize and quantify concentration fields, gas distribution
or mixing patterns within the bioreactor [254]. In PIV, the liquid is seeded with tracer
particles, and the flow is illuminated with a laser sheet. High-speed cameras capture
the particle movements, and software analyses the displacement between consecutive
images to calculate the velocity field within the bioreactor [257]. In the shadowgraphy
technique, diffuse light is shone on one side of the bioreactor, while the shadows cast by
gas bubbles are captured on the opposite side by a charge-coupled device (CCD) camera
and analyzed using image processing software [258]. A laser, paired with a diffuser, can
serve as the light source. In the LDA method, the laser beam is divided by a beam splitter,
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and the beams intersect within the bioreactor through a lens [257]. The measurement
occurs in the region where the beams cross. The Doppler-shifted frequency is detected by a
photomultiplier tube and then analyzed. In the ultrasonic method, a transparent bioreactor
is not required. A ring of transmitters and receivers can monitor the horizontal plane of the
bioreactor, allowing for simultaneous measurement of multiple gas bubbles. The bubble
size is calculated by assessing the time of flight [259].
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Figure 5. Schematic representation of five optical methods for validation; dimensions not to scale.

Additionally, there are still some limitations to multiphase modelling for bubbly flows
in CFD. The Euler-Euler approach, commonly used for two- or multi-fluid modelling, treats
the phases as interpenetrating and accounts for their local and transient phase fraction
distributions [260]. However, in this approach, important information about the interface
structure is lost and must be accounted for through closure models [260]. These models are
necessary to complete the balance equations for mass, momentum, and energy, and they
attempt to capture unresolved local phenomena. Unfortunately, these phenomena are often
poorly understood, partly due to the challenges in obtaining measurements in dense gas—
liquid flows. As a result, the literature contains numerous and often conflicting proposals
for closure models addressing the same phenomenon [261]. Most CFD simulations of
two-phase flows presented in the literature are post-test simulations of experiments, where
closure models and free parameters are adjusted to achieve reasonable agreement with
experimental data. However, this does not necessarily indicate that the CFD models have
reliable predictive capabilities [260]. Moreover, when applying PBM, the inclusion of
high-dimension functions combined with kinetic models is computationally expensive.
In addition, the history of the trajectory of the cells within the fluid cannot be accounted
for [6].

Therefore, the accuracy of CFD simulations is significantly constrained by the proper
selection of closure models for interphase mass, momentum, and heat exchange between
the dispersed and continuous phases [260]. Among these, the closure models for interfacial
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forces play a crucial role in determining the precision of CFD predictions. Modelling
turbulent bubbly flow is particularly challenging due to the complex interactions of hydro-
dynamic forces, bubble coalescence, and breakup [262]. Since no perfect closure models
exist for interfacial forces, careful selection of simulation parameters is essential. Despite
extensive research, accurately modelling these forces remains an unresolved issue in bubbly
flow simulations. The key interfacial forces include drag, lift, wall lubrication, virtual mass,
and turbulent dispersion forces [262].

Currently, a variety of interfacial force models have been proposed, derived from
experimental, analytical, and computational approaches. While researchers generally
agree on the basic formulation of interfacial forces for CFD, there is significant divergence
in the choice of closure models for the force coefficients, even for simple bubbly flow
regimes [60]. This variation arises because the shape of individual bubbles changes based
on the continuous phase flow field, physical properties, and bubble diameter. These factors
influence the dimensionless numbers—Eotvos, Morton, and bubble Reynolds numbers—
making the modelling of these coefficients complex. Therefore, a detailed discussion of the
available expressions for these coefficients is necessary [262].

The broad range of bubble sizes in bubbly flow significantly influences the outcomes
of multiphase CFD simulations. Interfacial force models rely on bubble diameter or size,
while the bubble’s diameter and shape depend on factors such as liquid flow conditions,
local pressure, fluid properties, and inlet conditions [262]. As a result, bubble diameter
is a critical parameter, and accurate characterization of local bubble size is essential for
precise modelling of interfacial momentum exchange between the phases [152,198,262].
For surface-aerated systems, the VOF model is suitable, while the Euler-Euler model
works well for benchtop forced-aerated bioreactors typical in cell culture, where bubble
coalescence and breakup have minimal impact on kpa values. However, in microbial
systems or larger bioreactors, coupling CFD with PBM is necessary, incorporating models
for drag, lift, and other forces, as well as bubble coalescence and breakup [198].

For transient simulations, time discretization must also be considered, and stability is
typically managed using the Courant-Friedrichs-Lewy number, which must be less than one
for explicit methods [107,108]. Implicit methods can handle CFL numbers greater than one,
but accuracy diminishes as CFL increases [107,108]. The computational expense associated
with CFD simulations is a critical factor that influences the feasibility and practicality of
applying numerical methods to solve fluid dynamics problems. Achieving highly accurate
and detailed simulations with intricate geometries, turbulent flows, and complex physics
often demands significant computational resources [32]. Balancing the need for accuracy
with available computational power is a constant challenge. Researchers must optimize
simulation parameters, adopt parallel computing strategies, and explore advancements in
hardware to manage computational expenses effectively [106,168]. Striking a pragmatic
balance ensures that CFD simulations remain both scientifically meaningful and practically
achievable within realistic timeframes.

The lack of systematic reporting of computational resources and runtimes was dis-
covered over the course of this research. While almost all studies specify mesh size,
discretization schemes, turbulence models, and multiphase models, the hardware details
and CPU time are rarely disclosed in interdisciplinary CFD and biotechnology works. This
unfortunately limits reproducibility and hinders realistic assessments of scalability. For
example, Hu et al. (2021) [8] and Wang et al. (2021) [152] describe gas--liquid simulations
with Euler—Euler and PBM models, yet do not specify hardware specifications utilized
in their work. Similarly, Jamshidian et al. (2023) [192] and Maluta et al. (2022) [63,203]
provide detailed validation of their respective multiphase models, but no information on
computational demands.
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Where comparisons are available, studies highlight that model choice directly de-
termines computational cost. Aubin et al. (2004) [146] showed that while LES can
more accurately capture transient turbulence structures, it requires much finer grids and
smaller timesteps than RANS models. This makes LES simulations far more computa-
tionally demanding. Similarly, Zadghaffari et al. (2010) [145] demonstrated that LES
of Rushton turbine flows required over one million cells and tens of thousands of time
steps. These examples show that steady-state RANS approaches can generally be run
on workstation hardware, whereas LES or Euler-Lagrange multiphase simulations can
require high-performance computing resources. More transparency in the hardware type,
number of cores, and wall clock runtimes should be established in the future in this
interdisciplinary field.

Encouraging interdisciplinary collaboration and action is another significant challenge
faced by the implementation of CFD in the biopharmaceutical industry. Successful mod-
elling in biopharmaceutical processes often requires expertise from diverse fields such
as chemistry, biotechnology, and fluid dynamics. Facilitating effective communication
and collaboration among interdisciplinary teams becomes crucial to harnessing the full
potential of CFD. This challenge involves effective collaboration between different scien-
tific domains and fostering an environment where experts from various fields can work
seamlessly toward optimizing biopharmaceutical processes.

5. Outlook and Future Applications

It has been observed that the application of CFD in bioprocess engineering, biotech-
nology, and the biopharmaceutical field is more and more being complemented by novel
computational approaches, kinetic compartment modeling and data-driven techniques.
These new directions are shaping the design, scale-up, and operation of the STBRs, with
wide impact seen from optimization of the fermentation process to environmental effective-
ness. The above trends highlighted by Table 6 reflect the methods that become the subject
of study in this day and age. Yet, careful analysis shows that all of them have not attained
the same level of maturity nor face the same barriers to implementation (Table 7).

Table 7. Emerging trends in CFD for stirred-tank bioreactors: implications, research tasks, sustain-
ability / credibility impacts, and representative references.

Sustainability/Credibility

Trend Topic Research Tasks Impact References
Efficient Lower energy use for
Hybrid CFD investigation of dDevelop benchmark simulation
+ AI/ML process space design atasets Faster optimization, [6,159,223]
Validate surrogate :
surrogates Reduced accurac leading to reduced
computational burden Y experimental trials
Integrate
CFD-reduced models with
Online monitoring and process Enables continuous/
Digital twins and real-time  prediction analytical circular manufacturing _
[235,263-265]
control Soft-sensors for technology sensors Improved resource
gradients and kia Demonstrate efficiency and robustness

Verification,
validation, and
uncertainty quantification

Advanced
multiphase
modelin
(PBM-CFD, LBM)

Higher credibility and
reproducibility

Better bubble/droplet size
prediction
Interfacial dynamics

gredictive control in pilot
TBRs

Standardize

reporting

(mesh, turbulence models,
CPU, runtimes)
Benchmark

breakup /coalescence
kernels

Compare Euler-Euler vs.
Euler-Lagrange vs.
mesh-free

Accurate predictions
Improved regulatory
acceptance

Reproducible science

More accurate O,
transfer and kj a leads to
optimized aeration and
lower power demand

[64,266]

[24,141-143,150-157]
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Table 7. Cont.

Sustainability/Credibility

Trend Topic Research Tasks Impact References
Dynamic Capture Couple biomass/ Eeeatlt frgiﬁlizzedr;t?gon of
thermophysical property  time-dependent rheology correlations with improved [112,115]
modeling viscosity CFD scale-up reliability

Link )

hydrodynamics to Enables realistic

CFD + biokinetic
modeling via
compartmental or
integrated approaches

CFD x
Sustainability metrics

metabolic kinetics
Simulate gradients of
substrates,

Develop hybrid
CFD-kinetic models
Validate

prediction of product
yield, quality, and waste
streams and supports

oxygen, and products compartment . §
Accelerate approaches efficient scale. up ;.ir.id
fermentation process sustainability
modeling

Combine CFD

outputs (power
consumption, ky a, mixing)

Enables energy- and

[6,69,159,161,211,222,248]

Link reactor physics to with lifecycle and carbon-aware design
environmental technoeconomic Supports sustainable 23,2671
footprint assessment bi pp .

framoworks ioprocessing

Case studies for

E. coli STBRs

Strategies that leverage established CFD frameworks, such as solvers accelerated
by graphics processing units (GPUs), hybrid compartment models, and the integration
of CFD with biokinetics, demonstrate the most immediate potential for impact. The
application of GPU acceleration has been validated in commonly utilized software such as
OpenFOAM, facilitating LES or Euler-Lagrange simulations that were formerly confined
to academic supercomputing facilities [268]. Likewise, compartment models grounded in
CFD [211] and their automated generation [159] offer a practical approach to minimizing
computational expenses while maintaining the relationship between hydrodynamic and
kinetic phenomena. These methodologies are currently being employed in industrial
settings to forecast mixing, dissolved oxygen levels, and substrate gradients [161], and
they can plausibly be incorporated into bioprocess development workflows within the
forthcoming years.

Digital twins, hybrid CFD-AI surrogates, and dynamic rheology or property mod-
eling demonstrates much development. Their cross-industry application during fermen-
tation, however, remains to be validated further. Digital twins are being developed
for bioprocesses [263], and validated CFD has guided manufacturing-scale operating
decisions [264]. Their extension to the large-scale STBRs will be subject to the develop-
ment of standardized data exchange between CFD, control systems, and process analytical
technology sensors. Artificial intelligence and ML-based surrogate modeling lowers simu-
lation times by orders-of-magnitude [223,269], carries out careful error quantification, and
shows clear-cut benchmarking protocols. Dynamic thermophysical property models also
demonstrate promise in efficiently simulating the fermentation process’ evolving viscosity
during fermentation [112], and data-driven learning of shear-thinning parameters from
velocimetry [115]. However, their reliability is hindered by the availability of sufficient
in-situ measurements and the complexity of the broth rheology.

More ambitious avenues—like the full integration of CFD outputs within sustainability
indicators (PMI, E-factor, and LCA)—are mostly theoretical. Although the quantities of
interest can be easily obtained by CFD (e.g., by the power input, the mixing time, the
oxygen transfer, the by-products accumulation) [23,69], no study has connected them
directly to PMI nor to E-factor on STBR bioprocesses. Likewise, the integration of CFD
with advanced genome-scale metabolic models is theoretical. These constitute promising
research avenues: the connection of the hydrodynamics to the productivity as well as
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to the by-products formation and the environmental impact would put the modeling
by CFD on the sustainability target of the biopharmaceutical and the industrial biotech
industries [267,270].

CFD articles in the biotechnology field often do not report mesh independence, run-
time, or model-form uncertainty, and it is difficult to compare between sets of results.
To have lasting impact, biotechnology CFD needs also to adopt best-practice protocols
like aerospace or nuclear engineering, where this is a fundamental condition of model
credibility [64,271]. Analogously, the community requires openly available benchmark
datasets—of geometries, of conditions of operation, and of experimental validation data—
so that rapid development of models can be made easier and novel methods can be properly
compared. Linking CFD and compartmental kinetic modeling already sit on the threshold
of application to design and optimization efforts. Digital twins and Al surrogates become
operational decision tools and real-time monitoring tools. Dynamic property modeling
and coupling of the CFD-LCA follow and hold the promise of directly linking reactor
design and operation to green manufacturability metrics. These trajectories collectively
point the path that can take today’s high-fidelity simulation to the sustainable, data-driven
biomanufacturing ecosystems of the future.

6. Conclusions

Published research on CFD simulations in the biopharmaceutical industry, that follow
the course of a fermentation within a STBR with appropriate resolution, is notably scarce
due to the interdisciplinary nature of this topic. Despite the growing adoption of CFD
software in production and Research and Development (R&D) sectors, there seems to be a
reluctance to share findings and technologies. However, the few available publications on
this topic primarily concentrate on evaluating shear rates in bioreactors [27,29], forecasting
bubble size distribution through population balance modelling [152], assessing mixing effi-
ciency and homogenization times [23,79,210], identifying inadequately mixed regions [132],
and performing scale-up/down calculations [31,49,272,273] involving turbulent kinetic
energy [132], average fluid velocity [192], power number and power per volume [166,274],
among other parameters.

In the context of turbulent mixing simulations, the RANS equations are favored for
their lower computational cost and demonstrated accuracy, as opposed to more resource-
intensive methods such as DNS, LES, DES, among others. For mixing simulations, the
MREF is frequently employed for simpler implementation and lower computational cost.
Such models allow for lower computational cost and accuracy, compared to more complex
simulations that involve the physical rotation of mixers using moving (sliding) mesh
methods. These models require significantly longer computational times. Euler—Euler
multiphase models coupled with gas dispersion models were the most commonly used to
model bubble size distribution, as well as the break-up and coalescence behaviors. Briefly
catalogued in Table 6, CFD application progress for stirred tank bioreactors ranges from
initial turbulence modeling and hydrodynamic validation to recent studies that combine
population balance modeling, optimization schemes, and digital twinning methodology.
This work demonstrates that CFD has become a multifaceted tool that can assist with
fundamental bioprocess knowledge as well as with process intensification at Industrial
scale. Even so, variety of methodology serves to underline that future work remains
necessary in experimental validation, biological heterogeneity handling, and management
of computational cost of sophisticated multiphase and turbulence models.

Understanding the influence of agitation and OTR on the generation and selectivity of
particular biochemical pathways for product formation is essential for optimizing the per-
formance of bioprocesses). While there is extensive guidance on designing, improving, and



Processes 2025, 13, 3005

42 of 56

operating aerobic bioprocesses in STBRs, predicting fermentation performance has become
more intricate, necessitating an increased reliance on both experimental and computational
approaches [136].

In order to implement more sustainable practices in biopharmaceutical fermentation
processes, it is crucial to clearly define the criteria for sustainable production of selected
biopharmaceuticals. This involves identifying specific metrics and techniques for analyz-
ing and comparing the manufacturing process with others. The goal of minimizing the
environmental footprint of the API and the overall API development process is essential
for the future sustainability of the biopharmaceutical industry. By explicitly linking CFD
modeling and output parameters such as power consumption, mixing performance and
quality and oxygen mass transfer with sustainability indicators, this review demonstrates
that CFD is not only a predictive tool for hydrodynamics but also a quantitative framework
for evaluating the environmental impact of microbial fermenter operation.

To implement more sustainable practices in biopharmaceutical fermentation processes,
it is crucial to clearly define the criteria for sustainable production of selected biophar-
maceuticals. This involves identifying specific metrics and techniques for analyzing and
comparing the manufacturing process with others. Among these considerations, efficient
mixing within STBRs plays a vital role, as it directly influences mass transfer, oxygen deliv-
ery, and energy consumption. Poor mixing can lead to the formation of dead zones and
gradients in pH, temperature, or nutrients, which compromise product quality and increase
waste. CFD can be effectively applied to analyze and optimize mixing performance in
STBRs, ensuring uniform conditions throughout the reactor while reducing energy use and
minimizing solvent and water consumption during cleaning operations. By incorporating
CFD-driven design and process improvements, manufacturers can align mixing strategies
with broader sustainability goals, ultimately reducing the environmental footprint of both
the active pharmaceutical ingredient and the overall production process—an essential step
toward a more responsible and future-proof biopharmaceutical industry.
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The following abbreviations are used in this manuscript:

Symbol Definition

a Specific Surface

Ag Gas Bubble Surface

p Specific Heat Capacity

C; Constant for Oxygen Diffusivity
dp Gas Bubble Diameter

Dy, Oxygen Diffusivity

D, T Diffusion Coefficient
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do, Solved Oxygen Concentration

dOy* Maximum Solved Oxygen Concentration
F~ Force Vector

Ax Differentially Small Change in Distance
At Differentially Small Time Step

k Turbulent Kinetic Energy

ki, Oxygen Transfer Coefficient

Lehar Characteristic Length

M Torque

N Rotational Speed

P Power

P Power Number

qo2 Specific Oxygen Requirement

Se Source Term of Variable ¢

T Temperature

tm Mixing Time

u”’ Velocity Vector

Uy Velocity Component in x-Direction
u,v,w Velocity Components in 3 Directions
\Y% Volume

X 3D Cartesian Coordinate

X Biomass Concentration

oG Phase Fraction of Gaseous Bubbles
o Phase Fraction of Phase k

Yave Average Shear Rate

Y Surface Tension Force

) Partial Derivative

Turbulent Energy Dissipation Rate in Liquid Phase per
Unit Mass
Average Viscous Dissipation Rate of Turbulent Energy

per Unit Mass
n Molecular Viscosity (Spatial Scale)
A Mean Free Path Length
Ah Heat Conductivity
v Dynamic Viscosity
Ueff Effective Viscosity
w Liquid Viscosity
Vi,V Kinematic Viscosity
ud Pi
P Density of Liquid Phase
095 Mixing Time at 95% Homogeneity
T Shear Stress
Tave Average Shear Stress
T Time Scale
@ Any Generic Variable
w Specific Dissipation Rate
A Nabla Operator
?.3% Convective Mass Transfer
Das V2w Molecular Diffusion
Iy Net Rate of Production
Sub- and Superscripts
ave Average

char Characteristic
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Acronyms and Abbreviations
Al
AMI
ANN
API
Bw
BSD

C
CAD
CAGR
CCD
CFD

CFD-ANN-NSGA

Gi
CSBR
CT
Di
DES
DNA
DNS
DoE
E. coli
E-Factor
FEM
Fr
FVM

Effective

Impeller

Gaseous Phase

For Two Different Phases
Liquid Phase

Mixing

Referred to Actual Value
95% Homogeneity

Artificial Intelligence

Arbitrary Mesh Interface
Artificial Neural Network
Active biopharmaceutical Ingredient
Wall Baffles

Bubble Size Distribution
Courant Number
Computer-Aided Design
Compound Annual Growth Rate
Charge Coupled Device
Computational Fluid Dynamics

Computational Fluid Dynamics—ArtificialNeural
Network-Non-dominated SortingGenetic Algorithm

Impeller Clearance
Continuously Stirred Bioreactor
Computed Tomography
Impeller Diameter
Detached Eddy Simulation
Deoxyribonucleic Acid
Direct Numerical Simulation
Design of Experiments
Escherichia coli
Environmental Factor

Finite Element Methods
Froude Number

Finite Volume Methods
Galilei Number

Liquid Height

Hydrochloric Acid
Knudsen Number

Lattice Boltzmann

Lattice Boltzmann Methods
Life Cycle Assessment
Laser Doppler Anemometry
Laser Doppler Velocimetry
Large Eddy Simulation
Machine Learning

Mass Manufacturing Intensity
Multiple Reference Frames
Multiple Size Group
Sodium Chloride
Navier-Stokes

Newton Number

Oxygen Take-up Rate
Oxygen Uptake
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PBE Population Balance Equation
PBM Population Balance Model
PDEs Partial Differential Equations
Pe Peclet Number
PIV Particle Image Velocimetry
PLIF Planar Laser-Induced Fluorescence
PMI Process Mass Intensity
Pr Prandtl Number
QbD Quality-by-Design
RANS Reynolds-Averaged Navier-Stokes
rDNA Recombinant Deoxyribonucleic Acid
Re Reynolds Number
RNG Re-Normalization Group
RPM Revolutions Per Minute
RSM Reynolds Stress Model
RTD Residence Time Distribution
R&D Research and Development
Sc Schmidt Number
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SM Sliding Mesh
SPH Smoothed Particle Hydrodynamics
SST Shear Stress Transport
STBR Stirred Tank Bioreactor
SuUS Single-Use Systems
T Tank Diameter
TEA Techno-Economic Analysis
UDF User-Defined Function
uw Upwind
VOF Volume of Fluid
W Impeller Blade Length
WARIEN Water Related Impact of Energy
We Weber Number
6BT Six-Bent Blade Turbine
6ITD Six-Inclined Blade Down-pumping Turbine
6ITU Six-Inclined Blade Up-pumping Turbine
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